Skip to main content
Log in

No-Three-in-Line-in-3D

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The no-three-in-line problem, introduced by Dudeney in 1917, asks for the maximum number of points in the n × n grid with no three points collinear. Erdos proved that the answer is Θ(n). We consider the analogous problem in three dimensions, and prove that the maximum number of points in the n × n × n grid with no three collinear is Θ(n2). This result is generalised by the notion of a 3D drawing of a graph. Here each vertex is represented by a distinct gridpoint in \({\Bbb Z}^3\), such that the line-segment representing each edge does not intersect any vertex, except for its own endpoints. Note that edges may cross. A 3D drawing of a complete graph Kn is nothing more than a set of n gridpoints with no three collinear. A slight generalisation of our first result is that the minimum volume for a 3D drawing of Kn is Θ(n3/2). This compares favourably with Θ(n3) when edges are not allowed to cross. Generalising the construction for Kn, we prove that every k-colourable graph on n vertices has a 3D drawing with \({\cal O}{n\sqrt{k}}\) volume, which is optimal for the k-partite Turan graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Attila Por or David R. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Por, A., Wood, D. No-Three-in-Line-in-3D. Algorithmica 47, 481–488 (2007). https://doi.org/10.1007/s00453-006-0158-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-006-0158-9

Keywords

Navigation