Skip to main content
Log in

Algorithms for Modular Counting of Roots of Multivariate Polynomials

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a multivariate polynomial P(X 1,…,X n ) over a finite field \(\ensuremath {\mathbb {F}_{q}}\) , let N(P) denote the number of roots over \(\ensuremath {\mathbb {F}_{q}}^{n}\) . The modular root counting problem is given a modulus r, to determine N r (P)=N(P)mod r. We study the complexity of computing N r (P), when the polynomial is given as a sum of monomials. We give an efficient algorithm to compute N r (P) when the modulus r is a power of the characteristic of the field. We show that for all other moduli, the problem of computing N r (P) is \({\rm NP}\) -hard. We present some hardness results which imply that our algorithm is essentially optimal for prime fields. We show an equivalence between maximum-likelihood decoding for Reed-Solomon codes and a root-finding problem for symmetric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adleman, L., Huang, M.-D.: Counting rational points on curves and Abelian varieties over finite fields. In: Proceedings of the 1996 Algorithmic Number Theory Symposium. LNCS, vol. 1122, pp. 1–16. Springer, Berlin (1996)

    Google Scholar 

  2. Artin, M.: Algebra. Prentice Hall, New York (1991)

    Google Scholar 

  3. Beigel, R., Tarui, J.: On ACC. Comput. Complex. 4, 350–366 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ehrenfeucht, A., Karpinski, M.: The computational complexity of (xor, and)-counting problems. Tech. Report 8543-CS, ICSI, Berkeley (1990)

  5. Grigoriev, D., Karpinski, M.: An approximation algorithm for the number of zeroes of arbitrary polynomials over GF[q]. In: Proc. 32nd IEEE Symposium on Foundations of Computer Science (FOCS’91), pp. 662–669 (1991)

  6. Guruswami, V., Vardy, A.: Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. In: Proceedings of the ACM-SIAM symposium on Discrete Algorithms (SODA’05), pp. 470–478 (2005)

  7. Huang, M.-D., Ierardi, D.: Counting rational points on curves over finite fields. In: Proceedings of the 34th IEEE Symposium on Foundations of Computer Science (FOCS’93), pp. 616–625 (1993)

  8. Huang, M.-D., Wong, Y.: Solvability of systems of polynomial congruences modulo a large prime. J. Comput. Complex. 8, 227–257 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karpinski, M., Luby, M.: Approximating the number of zeroes of a GF[2] polynomial. J. Algorithms 14, 280–287 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kedlaya, K.: Computing Zeta functions via p-adic cohomology. In: Algorithmic Number Theory Symposium (ANTS), pp. 1–17 (2004)

  11. Lauder, A., Wan, D.: Computing zeta functions of Artin-Schreier curves over finite fields ii. J. Complex. 20(2–3), 331–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lauder, A., Wan, D.: Counting points on varieties over finite fields of small characteristic. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography (Mathematical Sciences Research Institute Publications). Cambridge University Press (2007, to appear)

  13. Lidl, R., Niederreiter, H.: Finite Fields, Encylopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Luby, M., Velicković, B., Wigderson, A.: Deterministic approximate counting of depth-2 circuits. In: Israel Symposium on Theory of Computing Systems, pp. 18–24 (1993)

  15. Mason, R.C.: Diophantine Equations Over Function Fields. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  16. Moreno, O., Moreno, C.J.: Improvements of the Chevalley-Warning and the Ax-Katz theorems. Am. J. Math. 117(1), 241–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Papadimitriou, C.: Computational Complexity. Addison–Wesley, Reading (1994)

    MATH  Google Scholar 

  18. Pila, J.: Frobenius maps of Abelian varieties and finding roots of unity in finite fields. Math. Comput. 55, 745–763 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schoof, R.: Counting points on elliptic curves over finite fields. J. Th’eor. Nr. Bord. 7, 219–254 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 189–201 (1979)

  22. Valiant, L.G.: Completeness for parity problems. In: Proc. 11th International Computing and Combinatorics Conference (COCOON’05), pp. 1–8 (2005)

  23. Valiant, L.G.: Accidental algorithms. In: Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 509–517 (2006)

  24. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 85–93 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. von zur Gathen, J., Karpinski, M., Shparlinski, I.: Counting curves and their projections. Comput. Complex. 6, 64–99 (1996)

    Article  Google Scholar 

  26. Wan, D.: A Chevalley-Warning approach to p-adic estimate of character sums. Proc. Am. Math. Soc. 123, 45–54 (1995)

    Article  MATH  Google Scholar 

  27. Wan, D.: Computing Zeta functions over finite fields. Contemp. Math. 225, 135–141 (1999)

    Google Scholar 

  28. Wan, D.: Modular counting of rational points on sparse equations over finite fields. Found. Comput. Math. (2006, to appear)

  29. Wan, D.: Personal communication (April 2006)

  30. Yao, A.C.: On ACC and threshold circuits. In: 31st IEEE Symposium on Foundations of Computer Science (FOCS’90), pp. 619–627 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parikshit Gopalan.

Additional information

P. Gopalan’s and R.J Lipton’s research was supported by NSF grant CCR-3606B64.

V. Guruswami’s research was supported in part by NSF grant CCF-0343672 and a Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalan, P., Guruswami, V. & Lipton, R.J. Algorithms for Modular Counting of Roots of Multivariate Polynomials. Algorithmica 50, 479–496 (2008). https://doi.org/10.1007/s00453-007-9097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9097-3

Keywords

Navigation