Skip to main content
Log in

A Note on Multiflows and Treewidth

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider multicommodity flow problems in capacitated graphs where the treewidth of the underlying graph is bounded by r. The parameter r is allowed to be a function of the input size. An instance of the problem consists of a capacitated graph and a collection of terminal pairs. Each terminal pair has a non-negative demand that is to be routed between the nodes in the pair. A class of optimization problems is obtained when the goal is to route a maximum number of the pairs in the graph subject to the capacity constraints on the edges. Depending on whether routings are fractional, integral or unsplittable, three different versions are obtained; these are commonly referred to respectively as maximum MCF, EDP (the demands are further constrained to be one) and UFP. We obtain the following results in such graphs.

  1. An O(rlog rlog n) approximation for EDP and UFP.

  2. The integrality gap of the multicommodity flow relaxation for EDP and UFP is \(O(\min\{r\log n,\sqrt{n}\})\) .

The integrality gap result above is essentially tight since there exist (planar) instances on which the gap is \(\Omega(\min\{r,\sqrt{n}\})\) . These results extend the rather limited number of graph classes that admit poly-logarithmic approximations for maximum EDP. Another related question is whether the cut-condition, a necessary condition for (fractionally) routing all pairs, is approximately sufficient. We show the following result in this context.

  1. The flow-cut gap for product multicommodity flow instances is O(log r). This was shown earlier by Rabinovich; we obtain a different proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamson, K., Fellows, M.: Finite automata, bounded treewidth and well-quasiordering. In: Robertson, N., Seymour, P. (eds.) Graph Structure Theory, Proceedings of the Joint Summer Research Conference on Graph Minors, Seattle, June 1991. Contemporary Mathematics, vol. 147, pp. 539–564. American Mathematical Society, Providence (1993)

    Google Scholar 

  2. Andrews, M., Zhang, L.: Logarithmic hardness of the undirected edge-disjoint paths problem. JACM 53(5), 745–761 (2006). Preliminary version in Proc. of ACM STOC, pp. 276–283, 2005

    Article  MathSciNet  Google Scholar 

  3. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of the undirected edge-disjoint paths problem with congestion. In: Proc. of IEEE FOCS, pp. 226–244, 2005

  4. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph Partitioning. In: Proc. of ACM STOC, pp. 222–231, 2004

  5. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. In: Proc. of ACM STOC, pp. 553–562, 2005

  6. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Computing 27(1), 291–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–317 (1996). Preliminary version in Proc. of ACM STOC, 1993

    Article  MATH  MathSciNet  Google Scholar 

  8. Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow problem. In: Proc. of ACM STOC, pp. 156–165, 2004

  9. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge disjoint paths in planar graphs. In: Proc. of IEEE FOCS, pp. 71–80, 2004

  10. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked terminals, and routing problems. In: Proc. of ACM STOC, pp. 183–192, 2005

  11. Chekuri, C., Khanna, S., Shepherd, F.B.: An \(O(\sqrt{n})\) approximation and integrality gap for disjoint paths and unsplittable flow. Theory Comput. 2, 137–146 (2006)

    Article  MathSciNet  Google Scholar 

  12. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-disjoint paths in planar graphs with constant congestion. In: Proc. of ACM STOC, pp. 757–766, 2006

  13. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer programs. ACM Trans. Algorithms 3 (2007). Preliminary version in Proc. of ICALP, 2003

  14. Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for minimum-weight vertex separators. SIAM J. Comput. (to appear). Preliminary version in Proc. of ACM STOC, pp. 563–572, 2005

  15. Frank, A.: Packing paths, cuts, and circuits—a survey. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-Layout, pp. 49–100. Springer, Berlin (1990)

    Google Scholar 

  16. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geelen, J., Gerards, B., Whittle, G.: Tangles, tree-decompositions, and grids in matroids. Technical Research Report 04-5, School of Mathematical and Computing Sciences, Victoria Univ., Wellington, New Zealand

  18. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and 1-embeddings of graphs. Combinatorica 24, 233–269 (2004). Preliminary version in Proc. of IEEE FOCS, 1999

    Article  MATH  MathSciNet  Google Scholar 

  19. Indyk, P., Sidiropoulos, A.: Probabilistic embeddings of bounded genus graphs into planar graphs. In: Proc. of ACM SoCG, pp. 204–209, 2007

  20. Klein, P., Plotkin, S., Rao, S.: Planar graphs, multicommodity flow, and network decomposition. In: Proc. of ACM STOC, pp. 682–690, 1993

  21. Kleinberg, J.M.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT, Cambridge, MA (1996)

  22. Kleinberg, J.M.: An approximation algorithm for the disjoint paths problem in even-degree planar graphs. In: Proc. of IEEE FOCS, pp. 627–636, 2005

  23. Kolliopoulos, S.G.: Edge disjoint paths and unsplittable flow. In: Handbook on Approximation Algorithms and Metaheuristics. Chapman Hall/CRC Press, London/Boca Raton (2007)

    Google Scholar 

  24. Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using greedy algorithms and packing integer programs. Math. Program. A (99), 63–87 (2004). Preliminary version in Proc. of IPCO, 1998

  25. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: Proc. of ACM-SIAM SODA, pp. 184–193, 2002

  26. Krauthgamer, R., Lee, J., Mendel, M., Naor, A.: Measured descent: a new embedding method for finite metrics. Geom. Funct. Anal. 15(4), 839–858 (2005). Preliminary version in Proc. of IEEE FOCS, 2004

    Article  MATH  MathSciNet  Google Scholar 

  27. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM 46(6), 787–832 (1999). Preliminary version in Proc. of IEEE FOCS, 1988

    Article  MATH  MathSciNet  Google Scholar 

  28. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995). Preliminary version in Proc. of IEEE FOCS, 1994

    Article  MATH  MathSciNet  Google Scholar 

  29. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb. Theory Ser. B 31, 75–81 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rabinovich, Y.: On average distortion of embedding metrics into the line and into 1. In: Proc. of ACM STOC, pp. 456–462, 2003

  31. Rao, S.: Small distortion and volume preserving embeddings for planar and Euclidean metrics. In: Proc. of ACM SoCG, pp. 300–306, 1999

  32. Robertson, N., Seymour, P.D.: Graph Minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Robertson, N., Seymour, P.D.: Outline of a disjoint paths algorithm. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-Layout. Springer, Berlin (1990)

    Google Scholar 

  34. Robertson, N., Seymour, P.D.: Graph Minors. XVI. Excluding a non-planar graph. J. Comb. Theory Ser. B 89, 43–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Robertson, N., Seymour, P.D., Thomas, R.: Quickly Excluding a Planar Graph. J. Comb. Theory Ser. B 62, 323–348 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  37. Sidiropoulos, A.: Personal communication (November 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Chekuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekuri, C., Khanna, S. & Shepherd, F.B. A Note on Multiflows and Treewidth. Algorithmica 54, 400–412 (2009). https://doi.org/10.1007/s00453-007-9129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9129-z

Keywords

Navigation