Skip to main content
Log in

Fixed-Parameter Complexity of Minimum Profile Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem. Namely, we study the problem of deciding whether the profile of a connected graph of order n is at most n−1+k, considering k as the parameter; this is a parameterization above guaranteed value, since n−1 is a tight lower bound for the profile. We present two fixed-parameter algorithms for this problem. The first algorithm is based on a forbidden subgraph characterization of interval graphs. The second algorithm is based on two simple kernelization rules which allow us to produce a kernel with linear number of vertices and edges. For showing the correctness of the second algorithm we need to establish structural properties of graphs with small profile which are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38, 31–45 (2007)

    Article  Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Google Scholar 

  4. Billionnet, A.: On interval graphs and matrix profiles. RAIRO Tech. Oper. 20, 245–256 (1986)

    MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Comput. Appl. Biosci. 11, 49–57 (1995)

    Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MATH  Google Scholar 

  7. Diaz, J., Gibbons, A., Paterson, M., Toran, J.: The minsumcut problem. Lect. Notes Comput. Sci. 519, 65–79 (1991)

    Article  MathSciNet  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  9. Fomin, F.V., Golovach, P.A.: Graph searching and interval completion. SIAM J. Discrete Math. 13, 454–464 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.R.: Computers and Intractability. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2, 139–152 (1995)

    Google Scholar 

  12. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38, 31–45 (2007)

    Article  Google Scholar 

  13. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41, 521–538 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few edges. In: Proc. STOC 2007, 39th ACM Symposium on Theory of Computing, pp. 374–381. ACM, New York (2007)

    Chapter  Google Scholar 

  15. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: Proc. 25th Annual Symp. Theory Comput., pp. 278–285 (1993)

  16. Kendall, D.G.: Incidence matrices, interval graphs, and seriation in archeology. Pac. J. Math. 28, 565–570 (1969)

    MATH  MathSciNet  Google Scholar 

  17. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. Pol. Akad. Nauk 51, 45–64 (1962)

    MATH  MathSciNet  Google Scholar 

  18. Lin, Y., Yuan, J.: Profile minimization problem for matrices and graphs. Acta Math. Appl. Sin. 10, 107–112 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)

    MATH  Google Scholar 

  20. Serna, M., Thilikos, D.M.: Parameterized complexity for graph layout problems. EATCS Bull. 86, 41–65 (2005)

    MathSciNet  MATH  Google Scholar 

  21. West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Gutin.

Additional information

A preliminary version of the paper is published in Proc. IWPEC 2006, LNCS vol. 4169, 60–71.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutin, G., Szeider, S. & Yeo, A. Fixed-Parameter Complexity of Minimum Profile Problems. Algorithmica 52, 133–152 (2008). https://doi.org/10.1007/s00453-007-9144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9144-0

Keywords