Skip to main content
Log in

Geometric Representation of Graphs in Low Dimension Using Axis Parallel Boxes

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

An axis-parallel k-dimensional box is a Cartesian product R 1×R 2×⋅⋅⋅×R k where R i (for 1≤ik) is a closed interval of the form [a i ,b i ] on the real line. For a graph G, its boxicity box (G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc.

A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a \(\lfloor 1+\frac{1}{c}\log n\rfloor^{d-1}\) approximation ratio for any constant c≥1 when d≥2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard.

We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in ⌈(Δ+2)ln n⌉ dimensions, where Δ is the maximum degree of G. This algorithm implies that box (G)≤⌈(Δ+2)ln n⌉ for any graph G. Our bound is tight up to a factor of ln n.

We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm.

Though our general upper bound is in terms of maximum degree Δ, we show that for almost all graphs on n vertices, their boxicity is O(d av ln n) where d av is the average degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)

    MATH  Google Scholar 

  2. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellantoni, S., Hartman, I.B.-A., Przytycka, T., Whitesides, S.: Grid intersection graphs and boxicity. Discrete Math. 114, 41–49 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithms 41, 443–470 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–21 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Bollobás, B.: Random Graphs, 2 edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46, 178–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chandran, L.S., Sivadasan, N.: Boxicity and Treewidth. J. Comb. Theory Ser. B 97(5), 733–744 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chandran, L.S., Francis, M.C., Sivadasan, N.: Boxicity and maximum degree. J. Comb. Theory Ser. B (2007). doi:10.1016/j.jctb.2007.08.002

    Google Scholar 

  10. Chandran, L.S., Francis, M.C., Sivadasan, N.: Geometric representation of graphs in low dimension using axis parallel boxes. Technical report available at http://arxiv.org/pdf/cs/0605013

  11. Chang, Y.W., West, D.B.: Rectangle number for hyper cubes and complete multipartite graphs. In: 29th SE Conf. Comb., Graph Th. and Comp., Congr. Numer., vol. 132, pp. 19–28 (1998)

  12. Chang, Y.W., West, D.B.: Interval number and boxicity of digraphs. In: Proceedings of the 8th International Graph Theory Conf. (1998)

  13. Cozzens, M.B.: Higher and multidimensional analogues of interval graphs. Ph.D. thesis, Rutgers University, New Brunswick, NJ (1981)

  14. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34, 1302–1323 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feinberg, R.B.: The circular dimension of a graph. Discrete Math. 25, 27–31 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hastad, J.: Clique is hard to approximate within n 1−ε. Acta Math. 182, 105–142 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)

    MATH  Google Scholar 

  18. Kratochvil, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roberts, F.S.: On the boxicity and Cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301–310. Academic, New York (1969)

    Google Scholar 

  20. Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete Math. Theor. Comput. Sci. 9, 127–136 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Scheinerman, E.R.: Intersection classes and multiple intersection parameters. Ph.D. thesis, Princeton University (1984)

  22. Shearer, J.B.: A note on circular dimension. Discrete Math. 29, 103–103 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser. B 40, 9–20 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trotter, W.T., West, J.D.B.: Poset boxicity of graphs. Discrete Math. 64, 105–107 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods 3, 351–358 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sunil Chandran.

Additional information

The work of L.S. Chandran and M.C. Francis was partially supported by a DST grant SR/S3/EECE/62/2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, L.S., Francis, M.C. & Sivadasan, N. Geometric Representation of Graphs in Low Dimension Using Axis Parallel Boxes. Algorithmica 56, 129–140 (2010). https://doi.org/10.1007/s00453-008-9163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9163-5

Keywords

Navigation