Skip to main content
Log in

Slow Mixing of Markov Chains Using Fault Lines and Fat Contours

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that local dynamics require exponential time for two sampling problems motivated by statistical physics: independent sets on the triangular lattice (the hard-core lattice gas model) and weighted even orientations of the two-dimensional Cartesian lattice (the 8-vertex model). For each problem, there is a parameter λ known as the fugacity, such that local Markov chains are expected to be fast when λ is small and slow when λ is large. Unfortunately, establishing slow mixing for these models has been a challenge, as standard contour arguments typically used to show that a chain has small conductance do not seem to apply. We modify this approach by introducing the notion of fat contours that can have nontrivial area, and use these to establish slow mixing of local chains defined for these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In: Séminaire de Probabilités  XVII. Springer Lecture Notes in Mathematics, vol. 986, pp. 243–297. Springer, Berlin (1981/82)

    Google Scholar 

  2. Borgs, C., Chayes, J.T., Frieze, A., Kim, J.H., Tetali, P., Vigoda, E., Vu, V.H.: Torpid mixing of some MCMC algorithms in statistical physics. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pp. 218–229 (1999)

  3. Galvin, D., Kahn, J.: On phase transitions in the hard-core model on Z d. Comb. Probab. Comput. 13, 137–164 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Galvin, D., Randall, D.: Sampling 3-colorings of the discrete torus. In: Proceedings of the 17th ACM/SIAM Symposium on Discrete Algorithms, pp. 376–384 (2007)

  5. Lawler, G.F., Sokal, A.D.: Bounds on the L2 spectrum for Markov chain and Markov processes: A generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309, 557–580 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling independent sets. Random Struct. Algorithms 15, 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Luby, M., Randall, D., Sinclair, A.J.: Markov chains for planar lattice structures. SIAM J. Comput. 31, 167–192 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  9. Randall, D.: Slow mixing of Glauber dynamics via topological obstructions. In: Proceedings of the 16th ACM/SIAM Symposium of Discrete Algorithms (SODA), pp. 870–879 (2006)

  10. Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov chains. J. Math. Phys. 41, 1598–1615 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 82, 93–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thomas, L.E.: Bound on the mass gap for finite volume stochastic ising models at low temperature. Commun. Math. Phys. 126, 1–11 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Randall.

Additional information

A preliminary version of this paper appeared in the Proceedings of the 11th International Workshop on Randomization and Approximation Techniques in Computer Science in Lecture Notes in Computer Science 4627:540–553 (2007).

S. Greenberg and D. Randall supported in part by NSF grants CCR-0515105 and DMS-0505505.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, S., Randall, D. Slow Mixing of Markov Chains Using Fault Lines and Fat Contours. Algorithmica 58, 911–927 (2010). https://doi.org/10.1007/s00453-008-9246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9246-3

Keywords

Navigation