Skip to main content
Log in

The Steiner Ratio Conjecture of Gilbert-Pollak May Still Be Open

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We offer evidence in the disproof of the continuity of the length of minimum inner spanning trees with respect to a parameter vector having a zero component. The continuity property is the key step of the proof of the conjecture in Du and Hwang (Proc. Nat. Acad. Sci. U.S.A. 87:9464–9466, 1990; Algorithmica 7(1):121–135, 1992). Therefore the Steiner ratio conjecture proposed by Gilbert-Pollak (SIAM J. Appl. Math. 16(1):1–29, 1968) has not been proved yet. The Steiner ratio of a round sphere has been discussed in Rubinstein and Weng (J. Comb. Optim. 1:67–78, 1997) by assuming the validity of the conjecture on a Euclidean plane in Du and Hwang (Proc. Nat. Acad. Sci. U.S.A. 87:9464–9466, 1990; Algorithmica 7(1):121–135, 1992). Hence the results in Rubinstein and Weng (J. Comb. Optim. 1:67–78, 1997) have not been proved yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert and Pollak is true. Proc. Nat. Acad. Sci. U.S.A. 87, 9464–9466 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Du, D.Z., Hwang, F.K.: A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica 7(1), 121–135 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ivanov, A.O., Tuzhilin, A.A., Cieslik, D.: Steiner ratio for manifolds. Math. Notes 74(3), 367–374 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Innami, N., Kim, B.H.: Steiner ratio for hyperbolic surfaces. Proc. Jpn. Acad. Ser. A 82(6), 77–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rubinstein, J.H., Weng, J.F.: Compression theorems and Steiner ratio on spheres. J. Comb. Optim. 1, 67–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Innami.

Additional information

The Research of B.H. Kim was supported by the Korea Research Council of Fundamental Science & Technology (KRCF) Grant No. C-RESEARCH-2006-11 NIMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innami, N., Kim, B.H., Mashiko, Y. et al. The Steiner Ratio Conjecture of Gilbert-Pollak May Still Be Open. Algorithmica 57, 869–872 (2010). https://doi.org/10.1007/s00453-008-9254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9254-3

Keywords