Skip to main content
Log in

On Locally Decodable Codes, Self-Correctable Codes, and t-Private PIR

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A k-query locally decodable code (LDC) allows to probabilistically decode any bit of an encoded message by probing only k bits of its corrupted encoding. A stronger and desirable property is that of self-correction, allowing to efficiently recover not only bits of the message but also arbitrary bits of its encoding. In contrast to the initial constructions of LDCs, the recent and most efficient constructions are not known to be self-correctable. The existence of self-correctable codes of comparable efficiency remains open.

A closely related problem with a very different motivation is that of private information retrieval (PIR). A k-server PIR protocol allows a user to retrieve the i-th bit of a database, which is replicated among k servers, without revealing information about i to any individual server. A natural generalization is t -private PIR, which keeps i hidden from any t colluding servers. In contrast to the initial PIR protocols, it is not known how to generalize the recent and most efficient protocols to yield t-private protocols of comparable efficiency.

In this work we study both of the above questions, showing that they are in fact related. We start by presenting a general transformation of any 1-private PIR protocol (equivalently, LDC) into a t-private protocol with a similar amount of communication per server. Combined with the recent result of Yekhanin (STOC 2007), this yields an improvement over previous t-private PIR protocols. A major weakness of our transformation is that the number of servers grows exponentially with t. We show that if the underlying LDC satisfies the stronger self-correction property, then there is a similar transformation in which the number of servers grows only linearly with t, which is the best one can hope for. Finally, we explore the possibility of improving current constructions of self-correctable codes and relate this question to a conjecture of Hamada concerning the algebraic rank of combinatorial designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akers, S., Robbins, T.: Logical design with three-input majority gates. Comput. Des. 12–27 (1963)

  2. Ambainis, A.: Upper bound on the communication complexity of private information retrieval. In: Proc. of the 24th International Colloquium on Automata Languages and Programing (ICALP), pp. 401–407 (1997)

  3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS ’92

    MATH  MathSciNet  Google Scholar 

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Preliminary version in FOCS ’92

    MATH  MathSciNet  Google Scholar 

  5. Assmus, E., Key, J.: Designs and Their Codes. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Assmus, E.F., Key, J.D.: Designs and codes: An update. Des. Codes Cryptogr. 9(1), 7–27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. of the 23rd Annual ACM Symposium on the Theory of Computing (STOC), pp. 21–31 (1991)

  8. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP Has subexponential time simulations unless EXPTIME has publishable proofs. Comput. Complex. 3, 307–318 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: 7th Ann. Symposium on Theoretical Aspects of Computer Science (STACS), pp. 37–48 (1990)

  10. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified construction. In: Proc. of the 28th International Colloquium on Automata Languages and Programing (ICALP), pp. 912–926 (2001)

  11. Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for information-theoretic private information retrieval. J. Comput. Syst. Sci. 71(2), 213–247 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the \(O(n^{\frac{1}{(2k-1)}})\) barrier for information-theoretic private information retrieval. In: Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 261–270 (2002)

  13. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, vol. 1, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  14. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1), 269–291 (1995)

    MATH  Google Scholar 

  15. Calkin, N.J., Key, J.D., De Resmini, M.J.: Minimum weight and dimension formulas for some geometric codes. Des. Codes Cryptogr. 17, 105–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proc. of the 29th Annual ACM Symposium on the Theory of Computing (STOC), pp. 304–313 (1997)

  17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc. of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 41–50 (1995)

  18. Chung, K., Trevisan, L., Vadhan, S.: Private communication (2007)

  19. Di-Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service-providers for private information retrieval. J. Cryptol. 14(1), 37–74 (2001). Preliminary version in PODC’98

    Article  MATH  MathSciNet  Google Scholar 

  20. Ding, P., Key, J.: Minimum-weight codewords as generators of generalized Reed-Muller codes. IEEE Trans. Inf. Theory 46, 2152–2158 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feige, U., Goldwasser, S., Lovasz, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary version in FOCS ’91

    MATH  MathSciNet  Google Scholar 

  22. Gasarch, W.: A survey on private information retrieval. Bull. Eur. Assoc. Theor. Comput. Sci. 82, 72–107 (2004). See http://www.cs.umd.edu/~gasarch/pir/pir.html for updates

    MATH  MathSciNet  Google Scholar 

  23. Hamada, N.: On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error-correcting codes. Hiroshima Math. J. 3, 153–226 (1973)

    MATH  MathSciNet  Google Scholar 

  24. Hamada, N.: The geometric structure and the p-rank of an affine triple system derived from a nonassociative moufang loop with the maximum associative center. J. Comb. Theory Ser. A 30(3), 285–297 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25.  Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-theoretic private information retrieval. In: Proc. of the 31st Annual ACM Symposium on the Theory of Computing (STOC), pp. 79–88 (1999)

  27. Ishai, Y., Kushilevitz, E.: On the hardness of information-theoretic multiparty computation. In: Proc. EUROCRYPT, pp. 439–455 (2004)

  28. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proc. of the 32th Annual ACM Symposium on the Theory of Computing (STOC), pp. 80–86 (2000)

  29. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes. J. Comput. Syst. Sci. 395–420 (2004). Preliminary version in STOC ’03

  30. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: Proc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 364–373 (1997)

  31. Lipton, R.: Efficient checking of computations. In: 7th Ann. Symposium on Theoretical Aspects of Computer Science (STACS), pp. 207–215 (1990)

  32. Lu, C.-J., Reingold, O., Vadhan, S.P., Wigderson, A.: Extractors: optimal up to constant factors. In: Proc. of the 35th Annual ACM Symposium on the Theory of Computing (STOC), pp. 602–611 (2003)

  33. Raghavendra, P.: A note on Yekhanin’s locally decodable codes. In: Electronic Colloquium on Computational Complexity (ECCC) (2007)

  34. Razborov, A.A., Yekhanin, S.: An Ω(n 1/3) lower bound for bilinear group based Private Information Retrieval. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 739–748 (2006)

  35. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sudan, M., Trevisan, L., Vadhan, S.P.: Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001). Preliminary version in STOC ’99

    Article  MATH  MathSciNet  Google Scholar 

  37. Tonchev, V.D.: Linear perfert codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Trevisan, L.: Some applications of coding theory in computational complexity. Quad. Mat. 13, 347–424 (2004). Also available as ECCC Report No. 43 (2004)

    MathSciNet  Google Scholar 

  39. Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and private information retrieval. In: Proc. of the 32nd International Colloquium on Automata Languages and Programing (ICALP), pp. 1424–1436 (2005)

  40. Woodruff, D.: New lower bounds for general locally decodable codes. In: Electronic Colloquium on Computational Complexity (ECCC), Report No. 6 (2007)

  41. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private information retrieval. In: Proc. of the 20th Annual IEEE Conference on Computational Complexity (CCC), pp. 275–284 (2005)

  42. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. In: Proc. of the 39th Annual ACM Symposium on the Theory of Computing (STOC) (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enav Weinreb.

Additional information

Research supported by grant 1310/06 from the Israel Science Foundation, grant 2004361 from the US–Israel Binational Science Foundation, and the Technion VPR fund. Part of this research was done while visiting IPAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkol, O., Ishai, Y. & Weinreb, E. On Locally Decodable Codes, Self-Correctable Codes, and t-Private PIR. Algorithmica 58, 831–859 (2010). https://doi.org/10.1007/s00453-008-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9272-1

Keywords

Navigation