Skip to main content
Log in

Fast 3-coloring Triangle-Free Planar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is \(\mathcal{O}(n\log n)\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kowalik, Ł.: Fast 3-coloring triangle-free planar graphs. In: Albers, S., Radzik, T. (eds.) Proc. 12th Annual European Symposium on Algorithms (ESA 2004). Lecture Notes in Computer Science, vol. 3221, pp. 436–447. Springer, Berlin (2004)

    Google Scholar 

  2. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring planar graphs. In: Proc. 28th Symposium on Theory of Computing, pp. 571–575. ACM, New York (1996)

    Google Scholar 

  3. Chiba, N., Nishizeki, T., Saito, N.: A linear algorithm for five-coloring a planar graph. J. Algorithms 2, 317–327 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grötzsch, H.: Ein dreifarbensatz fur dreikreisfreie netze auf der kuzel. Technical report, Wiss. Z. Martin Luther Univ. Halle Wittenberg, Math.-Nat. Reihe 8 (1959)

  6. Thomassen, C.: Grötzsch’s 3-color theorem and its counterparts for the torus and the projective plane. J. Comb. Theory, Ser. B 62, 268–279 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Thomassen, C.: A short list color proof of Grötzsch’s theorem. J. Comb. Theory, Ser. B 88, 189–192 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kowalik, Ł., Kurowski, M.: Oracles for bounded-length shortest paths in planar graphs. ACM Trans. Algorithms 2(3), 335–363 (2006)

    Article  MathSciNet  Google Scholar 

  9. Borodin, O.V., Raspaud, A.: A sufficient condition for planar graphs to be 3-colorable. J. Comb. Theory, Ser. B 88, 17–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borodin, O.V., Glebov, A.N., Raspaud, A., Salavatipour, M.R.: Planar graphs without cycles of length from 4 to 7 are 3-colorable. J. Comb. Theory, Ser. B 93(2), 303–311 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dvorak, Z., Král, D., Thomas, R.: Coloring triangle-free graphs on surfaces. In: Algorithms and Computation, 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17–19, 2007, Proceedings. LNCS, vol. 4835, pp. 2–4. Springer, Berlin (2007)

    Google Scholar 

  12. West, D.: Introduction to Graph Theory. Prentice Hall, New York (1996)

    MATH  Google Scholar 

  13. Gimbel, J., Thomassen, C.: Coloring graphs with fixed genus and girth. Trans. Am. Math. Soc. 349(11), 4555–4564 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Proc. 6th Int. Workshop on Algorithms and Data Structures. LNCS, vol. 1663, pp. 342–351. Springer, Berlin (1999)

    Chapter  Google Scholar 

  16. Dvořák, Z., Kawarabayashi, K., Thomas, R.: Three-coloring triangle-free planar graphs in linear time. In: SODA’09: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1176–1182 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kowalik.

Additional information

A preliminary version of this paper [1] was presented at ESA 2004.

The research has been partially supported by grants from the Polish Ministry of Science and Higher Education, projects 4T11C04425 and N206 005 32/0807. A part of the research was done during the author’s stay at BRICS, Aarhus University, Denmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalik, L. Fast 3-coloring Triangle-Free Planar Graphs. Algorithmica 58, 770–789 (2010). https://doi.org/10.1007/s00453-009-9295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9295-2

Keywords

Navigation