Skip to main content
Log in

A Unified Approach to Approximating Partial Covering Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

An instance of the generalized partial cover problem consists of a ground set U and a family of subsets \({\mathcal{S}}\subseteq 2^{U}\) . Each element eU is associated with a profit p(e), whereas each subset \(S\in \mathcal{S}\) has a cost c(S). The objective is to find a minimum cost subcollection \(\mathcal{S}'\subseteq \mathcal{S}\) such that the combined profit of the elements covered by \(\mathcal{S}'\) is at least P, a specified profit bound. In the prize-collecting version of this problem, there is no strict requirement to cover any element; however, if the subsets we pick leave an element eU uncovered, we incur a penalty of π(e). The goal is to identify a subcollection \(\mathcal{S}'\subseteq \mathcal{S}\) that minimizes the cost of \(\mathcal{S}'\) plus the penalties of uncovered elements.

Although problem-specific connections between the partial cover and the prize-collecting variants of a given covering problem have been explored and exploited, a more general connection remained open. The main contribution of this paper is to establish a formal relationship between these two variants. As a result, we present a unified framework for approximating problems that can be formulated or interpreted as special cases of generalized partial cover. We demonstrate the applicability of our method on a diverse collection of covering problems, for some of which we obtain the first non-trivial approximability results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach to online network optimization problems. ACM Trans. Algorithms 2(4), 640–660 (2006)

    Article  MathSciNet  Google Scholar 

  2. Balas, E., Padberg, M.: Set partitioning: A survey. SIAM Rev. 18(4), 710–760 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bar-Yehuda, R., Rawitz, D.: A tale of two methods. In: Theoretical Computer Science: Essays in Memory of Shimon Even, pp. 196–217 (2006)

  6. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, pp. 298–308 (1998)

  7. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651 (2001)

  8. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Comput. Complex. 15(2), 94–114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and k-Steiner trees via the primal-dual method and LLagrangian relaxation. Math. Program. 100(2), 411–421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1997)

    Google Scholar 

  11. Edmonds, J., Johnson, E.L.: Matching: A well-solved class of integer linear programs. In: Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  12. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 1.8 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 5(2), 2009

  13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res. Lett. 25(4), 169–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garfinkel, R.S., Nemhauser, G.L.: Optimal set covering: A survey. In: Geoffrion, A.M. (ed.) Perspectives on Optimization, pp. 164–183 (1972)

  17. Garg, N.: Saving an epsilon: A 2-approximation for the k-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)

  18. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 621–630 (2006)

  22. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 631–640 (2006)

  23. Hochbaum, D.S.: Approximating covering and packing problems: Set cover, vertex cover, independent set, and related problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, Chap. 3, pp. 94–143. PWS, Boston (1997)

    Google Scholar 

  24. Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality framework with budget constraints. In: Proceedings of the 1st International Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 111–122 (1998)

  25. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Systems Sci. 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  27. Kearns, M.J.: The Computational Complexity of Machine Learning. MIT Press, Cambridge (1990)

    Google Scholar 

  28. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)

  29. Levin, A., Segev, D.: Partial multicuts in trees. Theor. Comput. Sci. 369(1–3), 384–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mestre, J.: Lagrangian relaxation and partial cover. In: Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, pp. 539–550 (2008)

  32. Murty, K.G., Perin, C.: A 1-matching blossom type algorithm for edge covering problems. Networks 12, 379–391 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Appl. Math. 126(1), 83–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  35. Padberg, M.W.: Covering, packing and knapsack problems. Ann. Discrete Math. 4, 265–287 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Parekh, O.: Polyhedral techniques for graphic covering problems. Ph.D. thesis, Department of Mathematical Sciences, Carnegie Mellon University (2002)

  37. Parekh, O., Segev, D.: Path hitting in acyclic graphs. Algorithmica 52(4), 466–486 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Plesník, J.: Constrained weighted matchings and edge coverings in graphs. Discrete Appl. Math. 92(2–3), 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Räcke, H.: Minimizing congestion in general networks. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 43–52 (2002)

  40. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Segev.

Additional information

An extended abstract of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms, 2006.

Research of J. Könemann was supported by NSERC grant no. 288340-2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Könemann, J., Parekh, O. & Segev, D. A Unified Approach to Approximating Partial Covering Problems. Algorithmica 59, 489–509 (2011). https://doi.org/10.1007/s00453-009-9317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9317-0

Keywords

Navigation