Abstract
We consider the variant of the classical Stable Marriage problem where preference lists can be incomplete and may contain ties. In such a setting, finding a stable matching of maximum size is NP-hard. We study the parameterized complexity of this problem, where the parameter can be the number of ties, the maximum or the overall length of ties. We also investigate the applicability of a local search algorithm for the problem. Finally, we examine the possibilities for giving an FPT algorithm or an FPT approximation algorithm for finding an egalitarian or a minimum regret matching.
Similar content being viewed by others
References
Aarts, E.H.L., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Wiley, New York (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)
Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J. Comput. 16(1), 111–128 (1987)
Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)
Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y., Scott, S.: Approximability results for stable marriage problems with ties. Theor. Comput. Sci. 306(1–3), 431–447 (2003)
Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–272 (1994)
Irving, R.W., Manlove, D.F.: Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems. J. Comb. Optim. 16(3), 279–292 (2008). doi:10.1007/s10878-007-9133-x
Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage. J. ACM 34(3), 532–543 (1987)
Iwama, K., Manlove, D., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: ICALP’99. LNCS, vol. 1644, pp. 443–452. Springer, Berlin (1999)
Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J. Comput. 32(2), 470–487 (2003)
Király, Z.: Better and simpler approximation algorithms for the stable marriage problem. In: ESA 2008. LNCS, vol. 5193, pp. 623–634. Springer, Berlin (2008)
Krokhin, A., Marx, D.: On the hardness of losing weight. In: ICALP 2008. LNCS, vol. 5125, pp. 662–673. Springer, Berlin (2008)
Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)
Marx, D.: Local search. Parameterized Complexity News 3, 7–8 (2008)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett. 36(1), 31–36 (2008)
Marx, D., Schlotter, I.: Stable assignment with couples: parameterized complexity and local search. Manuscript
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)
Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92, 991–1016 (1984)
Roth, A.E., Sotomayor, M.: Two Sided Matching: A Study in Game-Theoretic Modelling and Analysis. Cambridge University Press, Cambridge (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research funded by the Hungarian National Research Fund (OTKA grant K 67651). The first author is supported by Magyary Zoltán Felsöoktatási Közalapítvány.
Rights and permissions
About this article
Cite this article
Marx, D., Schlotter, I. Parameterized Complexity and Local Search Approaches for the Stable Marriage Problem with Ties. Algorithmica 58, 170–187 (2010). https://doi.org/10.1007/s00453-009-9326-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-009-9326-z