Skip to main content
Log in

Detecting Regular Visit Patterns

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We are given a trajectory \(\mathcal{T}\) and an area \(\mathcal{A}\) . \(\mathcal{T}\) might intersect \(\mathcal{A}\) several times, and our aim is to detect whether \(\mathcal{T}\) visits \(\mathcal{A}\) with some regularity, e.g. what is the longest time span that a GPS-GSM equipped elephant visited a specific lake on a daily (weekly or yearly) basis, where the elephant has to visit the lake most of the days (weeks or years), but not necessarily on every day (week or year).

During the modelling of such applications, we encountered an elementary problem on bitstrings, that we call LDS (LongestDenseSubstring). The bits of the bitstring correspond to a sequence of regular time points, in which a bit is set to 1 if and only if the trajectory \(\mathcal {T}\) intersects the area \(\mathcal{A}\) at the corresponding time point. For the LDS problem, we are given a string s as input and want to output a longest substring of s, such that the ratio of 1’s in the substring is at least a certain threshold.

In our model, LDS is a core problem for many applications that aim at detecting regularity of \(\mathcal{T}\) intersecting  \(\mathcal{A}\) . We propose an optimal algorithm to solve LDS, and also for related problems that are closer to applications, we provide efficient algorithms for detecting regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Naymat, G., Chawla, S., Gudmundsson, J.: Dimensionality reduction for long duration and complex spatio-temporal queries. In: Proceedings of the 22nd ACM Symposium on Applied Computing, pp. 393–397. ACM, New York (2007)

    Google Scholar 

  2. Allison, L.: Longest biased interval and longest non-negative sum interval. Bioinformatics 19(10), 1294–1295 (2003)

    Article  Google Scholar 

  3. Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership patterns among trajectories. In: Proceedings of the 22nd ACM Symposium on Applied Computing, pp. 3–7. ACM, New York (2007)

    Google Scholar 

  4. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. Theory Appl. 41(3), 111–125 (2007)

    Google Scholar 

  5. Brent, R.P.: Recent progress and prospects for integer factorisation algorithms. In: Lecture Notes in Computer Science, vol. 1858, pp. 3–22. Springer, Berlin (2000)

    Google Scholar 

  6. Chen, K.-Y., Chao, K.-M.: Optimal algorithms for locating the longest and shortest segments satisfying a sum or an average constraint. Inf. Process. Lett. 96, 197–201 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheung, D.W., Zhang, M., Kao, B., Yip, K.Y.: Mining periodic patterns with gap requirement from sequences. In: SIGMOD, pp. 623–633 (2005)

  8. Coward, E., Drabløs, F.: Detecting periodic patterns in biological sequences. Bioinformatics 14(6), 498–507 (1998)

    Article  Google Scholar 

  9. Dong, G., Han, J., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proceedings of the International Conference on Data Engineering, pp. 106–115 (1999)

  10. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. In: STOC’86: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 109–121. ACM, New York (1986)

    Chapter  Google Scholar 

  11. Fickett, J.W., Tung, C.S.: Assessment of protein coding measures. Nucleic Acids Res. 20, 6441–6450 (1992)

    Article  Google Scholar 

  12. Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-Rotival, M., Bernardi, G., Olofsson, B., Rodier, F.: The mosaic genome of warm-blooded vertebrates. Science 228(4702), 953–958 (1985)

    Article  Google Scholar 

  13. Frank, A.U.: Socio-economic units: their life and motion. In: Frank, A.U., Raper, J., Cheylan, J.P. (eds.) Life and Motion of Socio-Economic Units. GISDATA, vol. 8, pp. 21–34. Taylor & Francis, London (2001)

    Google Scholar 

  14. Gong, W., Han, J., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 214–218 (1998)

  15. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory data. In: Proceedings of the 14th ACM Symposium on Advances in GIS, pp. 35–42 (2006)

  16. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal sets. Geoinformatica 11(2), 195–215 (2007)

    Article  Google Scholar 

  17. Gudmundsson, J., Laube, P., Wolle, T.: Movement patterns in spatio-temporal data. In: Encyclopedia of GIS. Springer, Berlin (2008)

    Google Scholar 

  18. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Mateo (2005)

    Google Scholar 

  19. Koudas, N., Indyk, P., Muthukrishnan, S.: Identifying representative trends in massive time series data sets using sketches. In: VLDB, pp. 363–372 (2000)

  20. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD’07: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM, New York (2007)

    Chapter  Google Scholar 

  21. Ma, H., Hellerstein, J.L.: Mining partially periodic event patterns with unknown periods. In: Proceedings of the International Conference on Data Engineering, pp. 205–214 (2001)

  22. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 236–245. ACM, New York (2004)

    Chapter  Google Scholar 

  23. Mamoulis, H., Cao, H., Cheung, D.W.: Discovery of periodic patterns in spatiotemporal sequences. IEEE Trans. Knowl. Data Eng. 19(4), 453–467 (2007)

    Article  Google Scholar 

  24. Save the Elephants. www.save-the-elephants.org

  25. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pp. 673–684 (2002)

  26. Wang, L., Xu, Y.: Segid: identifying interesting segments in (multiple) sequence alignments. Bioinformatics 19(2), 297–298 (2003)

    Article  Google Scholar 

  27. Wang, W., Yang, J., Yu, P.S.: Mining asynchronous periodic patterns in time series data. In: Proceedings of the 6th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 275–279 (2000)

  28. Wildlife Tracking Projects with GPS GSM Collars. http://www.environmental-studies.de/projects/projects.html (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Gudmundsson.

Additional information

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djordjevic, B., Gudmundsson, J., Pham, A. et al. Detecting Regular Visit Patterns. Algorithmica 60, 829–852 (2011). https://doi.org/10.1007/s00453-009-9376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9376-2

Navigation