
Average Rate Speed Scaling

Nikhil Bansal∗ David P. Bunde† Ho-Leung Chan‡ Kirk Pruhs§

May 12, 2008

Abstract

Speed scaling is a power management technique that involvesdynamically changing the speed of a
processor. This gives rise to dual-objective scheduling problems, where the operating system both wants
to conserve energy and optimize some Quality of Service (QoS) measure of the resulting schedule. Yao,
Demers, and Shenker [4] considered the problem where the QoSconstraint is deadline feasibility and
the objective is to minimize the energy used. They proposed an online speed scaling algorithm Average
Rate (AVR) that runs each job at a constant speed between its release and its deadline. They showed that
the competitive ratio ofAVR is at most(2α)α/2 if a processor running at speeds uses powersα. We
show the competitive ratio ofAVR is at least((2 − δ)α)α/2, whereδ is a function ofα that approaches
zero asα approaches infinity. This shows that the competitive analysis of AVR by Yao, Demers, and
Shenker is essentially tight, at least for largeα. We also give an alternative proof that the competitive
ratio of AVR is at most(2α)α/2 using a potential function argument. We believe that this analysis is
significantly simpler and more elementary than the originalanalysis ofAVR in [4].

1 Introduction

Current processors produced by Intel and AMD allow the speedof the processor to be changed dynami-
cally. Intel’s SpeedStep and AMD’s PowerNOW technologies allow the Windows XP operating system to
dynamically change the speed of such a processor to conserveenergy. In this setting, the operating system
must not only have ajob selection policy to determine which job to run, but also aspeed scaling policy to
determine the speed at which the job will be run. In current CMOS based processors, the speed satisfies the
well-known cube-root-rule, that the speed is approximately the cube root of the power. Energy consumption
is power integrated over time. The operating system is facedwith a dual objective optimization problem
as it both wants to conserve energy, and optimize some Quality of Service (QoS) measure of the resulting
schedule.

The first theoretical worst-case study of speed scaling algorithms was in the seminal paper [4] by Yao,
Demers, and Shenker. Their QoS objective was deadline feasibility and the objective was to minimize
the energy used. More precisely, each jobi has a release timeri when it arrives in the system, a work
requirementwi, and a deadlinedi by which the job must be finished. If jobi runs at constant speeds, then

∗IBM T. J. Watson Research Center, nikhil@us.ibm.com
†Computer Science Department, Knox College, dbunde@knox.edu. Supported in part by Howard Hughes Medical Institute

grant 52005130.
‡Computer Science Department, University of Pittsburgh, hlchan@cs.pitt.edu.
§Computer Science Department, University of Pittsburgh, kirk@cs.pitt.edu. Supported in part by NSF grants CNS-0325353,

CCF-0514058 and IIS-0534531.

1

it completes inwi/s units of time. In this setting, an optimal job selection policy is Earliest Deadline First
(EDF). They assumed a speed to power functionP (s) = sα, whereα > 1 is some constant. If the cube-root
rule holds, thenα = 3. Yao, Demers, and Shenker [4] showed that the optimal energyfeasible schedule is
found by a simple greedy algorithm that we callYDS.

Yao, Demers, and Shenker [4] also proposed an online speed scaling algorithm, Average Rate (AVR).
Conceptually,AVR runs each jobi at speedwi/(di − ri) throughout interval[ri, di], independent of other
jobs. This spreads the work of each job as evenly over time as possible. By the convexity of the speed to
power function, this even spreading is energy optimal if theinstance consists of only one job. The speed
of the processor at any timet is then just the sum of the speeds of the jobs active at that time, that is
∑

i:t∈[ri,di]
wi

di−ri
. AVR is an appealing speed scaling algorithm because in some sense it is perfectly fair to

all jobs, and each job runs as if it were the only job in the instance.
Yao, Demers, and Shenker [4] showed that the competitive ratio, with respect to energy, ofAVR is at

leastαα. They also showed that the competitive ratio ofAVR, with respect to energy, is at most(2α)α/2.
We now outline this upper bound competitive analysis ofAVR. A job is defined to be oftype A if the
optimal schedule is always ahead ofAVR on this job. A job is defined to be oftype B if AVR is always
ahead of the optimal schedule on this job. A schedule isbitonic if every job is of type A or type B. [4]
observes that there is a worst-case instance that is bitonic, and that the competitive ratio ofAVR is at most
2α−1 times the competitive ratio ofAVR on instances of jobs of just one type (A or B). [4] then considers
instances consisting only of type-A jobs. [4] then introduces an auxiliary objective function that is related
to, but is not exactly, the energy used. In a somewhat involved reduction, [4] shows that with respect to
this auxiliary objective, there is a worst-case instance where the optimal schedule is non-preemptive, each
job starts when it is released, and the spans of the jobs are nested (where thespan of job i is the interval
[ri, di]). Whenα = 2, [4] then shows that for such instances, optimizing the auxiliary objective function can
be represented in terms of the eigenvalues of a particular tree-induced matrix, and shows how to bound the
largest eigenvalue for such tree-induced matrices. [4] states that this argument can be readily generalized to
an arbitraryα, and using Hölder’s inequality, give a bound on theℓp norm of a certain tree-induced matrix
that would replace the eigenvalue argument used in theα = 2 case.

So the natural question left open is, “What is the exact competitive ratio ofAVR?” Based on simulation
results, [4] conjectured that the competitive ratio ofAVR is exactlyαα. That is, that the lower bound in [4]
is correct, and intuitively, thatAVR can not simultaneously be losing badly on both type-A and type-B jobs.
In the case that the cube-root rule holds,αα = 33 = 27 is the best known competitive ratio for any online
algorithm. If the conjecture from [4] was true, this would beevidence in favor of adopting theAVR speed
scaling policy. Not only wouldAVR have the best known competitive ratio in the case that the cube-root
rule holds, butAVR is appealingly fair to all jobs.

Unfortunately, in section 4, we show that the upper bound on the competitive ratio from [4] is essentially
tight, at least for largerα. More precisely, we show thatAVR has competitive ratio at least((2− δ)α)α/2,
whereδ is a function ofα that approaches zero asα approaches infinity. In the case obeying the cube-root
rule, we get a lower bound of approximately 48 on the competitive ratio ofAVR.

In section 5, we give an alternative proof that the competitive ratio ofAVR is at most(2α)α/2. Our
analysis uses a potential function argument. We believe that this analysis is significantly simpler and more
elementary than the original analysis ofAVR in [4]. Our competitive analysis ofAVR branches off from
the analysis in [4] outlined above after the observation that the competitive ratio ofAVR is at most2α−1

times the competitive ratio ofAVR on jobs of just one type. We give a potential function argument that
AVR is αα-competitive on type-A jobs. We include a complete analysisof AVR in this paper, including
the elements of the analysis from [4] that we use. In principle, verifying this analysis requires only basic

2

algebra, except that some basic calculus is used to verify the positivity/negativity of certain polynomials
over particular ranges.

2 Other Related Results

There are now enough speed scaling papers in the literature that it is not practical to survey all such papers
here. We limit ourselves to those papers most related to the results presented here.

Yao, Demers, and Shenker [4] also proposed another online speed scaling algorithm, Optimal Available
(OA). The algorithmOA runs at the optimal speed (which can be computed using theYDS algorithm) as-
suming the current state and that no more jobs will be released in the future. [4] showed that the competitive
ratio ofOA is at leastαα. Using a potential function analysis, Bansal, Kimbrel, andPruhs [2] showed that
OA is actuallyαα-competitive.

Bansal, Kimbrel, and Pruhs [2] also introduced an online speed scaling algorithm that we callBKP.
Intuitively, BKP tries to mimic the offlineYDS schedule in some way. Formally, at timet BKP runs at
speede v(t) wherev(t) = maxt′>t

w(t,et−(e−1)t′,t′)
e(t′−t) andw(t, t1, t2) is the amount of work that has release

time at leastt1, deadline at mostt2, and that has already arrived by timet. [2] showed thatBKP is simulta-
neouslyO(1)-competitive for total energy, maximum temperature (assuming cooling obeys Newton’s law),
maximum power, and maximum speed. Specifically, [2] showed that the competitive ratio ofBKP with
respect to energy is at most2(α/(α− 1))αeα.

Albers, Müller, and Schmelzer [1] consider the problem of finding energy-efficient deadline-feasible
schedules on multiprocessors. [1] showed that the offline problem is NP-hard, and gaveO(1)-approximation
algorithms. [1] also gave online algorithms that areO(1)-competitive when job deadlines occur in the same
order as their release times.

3 Formal Problem Statement

A problem instance consists ofn jobs. Jobi has a release timeri, a deadlinedi > ri, and workwi > 0.
In the online version of the problem, the scheduler learns about a job only at its release time; at this time,
the scheduler also learns the exact work requirement and thedeadline of the job. We assume that time is
continuous. A schedule specifies for each time a job to be run and a speed at which to run the job. The speed
is the amount of work performed on the job per unit time. A job with work w run at a constant speeds thus
takesw

s time to complete. More generally, the work done on a job during a time period is the integral over
that time period of the speed at which the job is run. A schedule is feasible if for each jobi, work at least
wi is done on jobi during[ri, di]. Note that the times at which work is performed on jobi do not have to be
contiguous. If a job is run at speeds, then the power isP (s) = sα for some constantα > 1.

The energy used during a time period is the integral of the power over that time period. Our objective is
to minimize the total energy used by the schedule.

If A is a scheduling algorithm, thenA(I) denotes the schedule output byA on inputI . A schedule is
R-competitive for a particular objective function if the value of that objective function on the schedule is at
mostR times the value of the objective function on an optimal schedule. An online scheduling algorithmA
is R-competitive, or has competitive ratioR, if A(I) is R-competitive for all instancesI .

For a scheduleT , let sT,j(t) denote the speed jobj runs at timet in the scheduleT , and letsT (t) =
∑

j sT,j(t) denote the speed of the processor at timet in scheduleT . If U is a subcollection of jobs, let
sT,U(t) denote the sum of the speeds of the jobs inU at timet in the scheduleT . We will also substitute

3

an algorithm for a schedule in this notation. So for example,sAV R(t) is the speed of the algorithmAVR at
time t. We useOPT to denote a particular optimal schedule. We say that jobi is active between its release
time and its deadline. We callwi/(di − ri) thedensity of job i since this is the job’s work divided by the
length of the interval in which it is active.

Algorithm AVR: At all timest, run the earliest-deadline job at speedsAV R(t) =
∑

i
wi

di−ri
, where the sum

is over jobsi active at timet.

Consider a fixed optimum scheduleOPT. A job is said to be oftype A if
∫ t

rj

sOPT,j(t)dt ≥

∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj

Intuitively, these are the jobs thatOPT runs consistently ahead of their density. Similarly, the jobs of type
B are those thatOPT runs consistently behind their density, meaning they satisfy

∫ t

rj

sOPT,j(t)dt ≤

∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj.

In general, a job need not be of either type (or it can also be ofboth types, in which caseOPT executes
exactly as inAVR). We say an instance isbitonic if every job is of type A, type B, or both (in which case it is
arbitrarily assigned one of the types). A simple observation (Lemma 5) shows that ifAVR is c-competitive
for bitonic instances, then it is alsoc-competitive in general.

4 The Lower Bound

We give an instance on whichAVR uses up at least((2 − δ)α)α/2 times the energy used by an energy
optimum solution, whereδ is a function ofα that tends to zero asα increases.

Instance Description: For convenience we will work with a continuous version of thejob instance. We
say that work arrives at ratea(t) at timet to mean thata(t)dt units of work arrive during the infinitesimally
small interval[t, t + dt].

The instance consists of two sets of jobsA andB. The work inA arrives during the time interval
[0, 1− ǫ], at rate

a(t) =
1

(1 − t)1/α

and all the work inA has deadline 1. Hereǫ > 0 is an arbitrarily small but fixed constant. The work inB

arrives during the interval[1 − 1/c, 1− ǫ/c] (wherec is a constant that will be set toα − 1 later) at rate

b(t) =
c

c1/α(1− t)1/α

and the work in B arriving at timet has deadline1 + c(1− t).

Lemma 1 On the instance above, the optimal algorithm uses total energy at most 2 ln(1/ǫ).

Proof: It suffices to give some feasible schedule that uses energy2 ln(1/ǫ). Consider the schedule that
completes all jobs inA by running at speeda(t) during[0, 1− ǫ]. The energy usage is

∫ 1−ǫ

0
(a(t))αdt = [− ln(1− t)]1−ǫ

0 = ln(1/ǫ)

4

For jobs inB, note that they are released before time 1 and have deadlinesin [1 + ǫ, 2]. Consider any
time x ∈ [1 + ǫ, 2]. The jobs with deadline in[1 + ǫ, x] are released during[1 −

x−1
c , 1 −

ǫ
c]. Their total

amount of work is
∫ 1−ǫ/c

1−(x−1)/c
b(t)dt =

∫ 1−ǫ/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt

Let y = 1 + c(1− t). Thendy = −c · dt, and the amount of work equals

∫ 1−ǫ/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt =

∫ 1+ǫ

x

−1

(y − 1)1/α
dy =

∫ x

1+ǫ

1

(y − 1)1/α
dy

Therefore, consider the schedule that processes jobs inB at speed̂b(y) = 1
(y−1)1/α continuously during

[1 + ǫ, 2]. For anyx ∈ [1 + ǫ, 2], the amount of work done by timex equals the amount work with deadline
by x. So the schedule completes each job inB by its deadline. The energy usage to complete all jobs inB

is
∫ 2

1+ǫ
(b̂(t))αdt = [ln(y − 1)]21+ǫ = ln(1/ǫ)

Since the intervals of execution of work inA andB do not overlap, the total energy used is2 ln(1/ǫ) and
the lemma follows.

Lemma 2 On the instance above, AVR uses total energy at least
αα(1 + c

c1/α(c+1)
)α ln(1/ǫ) + K, where K is a constant independent of ǫ.

Proof: Consider the work inA. The work released at timet is scheduled by AVR uniformly during the
interval[t, 1]. Thus, at any timex ∈ [0, 1], the density due to work inA is

dena(x) =

∫ x

0

a(t) ·
1

1 − t
dt =

∫ x

0

1

(1− t)1/α
·

1

1− t
dt = α

(

1

(1 − x)1/α
− 1

)

Now consider the work inB. Note that for work released at timet, the duration between its release time
and deadline is1 + c(1− t) − t = (c + 1)(1− t). Thus, at any timex ∈ [1 −

1
c , 1 −

ǫ
c], the density due to

work in B is

denb(x) =

∫ x

1−1/c

c

c1/α(1− t)1/α
·

1

(c + 1)(1− t)
dt

=
c

c1/α(c + 1)
· α

(

1

(1− x)1/α
− c1/α

)

During the interval[1− 1
c , 1− ǫ], AVR runs at speed equal to the total density due to work inA andB.

Therefore, the energy usage of AVR is at least

∫ 1−ǫ

1−1/c
(dena(t) + denb(t))

α dt

=

∫ 1−ǫ

1−1/c

(

α

(

1 +
c

c1/α(c + 1)

)

·
1

(1− t)1/α
− α

2c + 1

c + 1

)α

dt (1)

5

Let Y = 1 + c
c1/α(c+1)

. Note that for allt ∈ [1− 1
c , 1− ǫ], we have that1 − t ≤ 1/c and hence

2c + 1

c + 1
·
(1 − t)1/α

Y
≤

2c + 1

c + 1
·

1

c1/α
·

c1/α(c + 1)

c1/α(c + 1) + c
≤

2c + 1

(c + 1) + c
= 1

Then, by factoringαY 1
(1−t)1/α , the right side of (1) can be written as

∫ 1−ǫ

1−1/c
ααY α 1

1 − t

(

1 −
2c + 1

c + 1
·
(1− t)1/α

Y

)α

dt

≥

∫ 1−ǫ

1−1/c

ααY α

1 − t

(

1 − α
2c + 1

c + 1
·
(1 − t)1/α

Y

)

dt as1 − αx ≤ (1− x)α for x ≤ 1

=

∫ 1−ǫ

1−1/c
ααY α

(

1

1 − t
− Z(1 − t)(1/α)−1

)

dt whereZ = α(2c+1)
Y (c+1)

= ααY α
[

− ln(1 − t) + αZ(1 − t)1/α
]1−ǫ

1−1/c

= ααY α

(

− ln ǫ + αZǫ1/α + ln
1

c
− αZ(

1

c
)1/α

)

≥ ααY α ln(1/ǫ) + ααY α

(

ln
1

c
− αZ(

1

c
)1/α

)

sinceǫ > 0

Sinceα, c, Y andZ are independent ofǫ the lemma follows.

Theorem 3 The competitive ratio of AVR is at least ((2− δ)α)α/2, where δ is a function of α that tends to
zero as α increases.

Proof: By Lemma 1 and 2, whenǫ tends to zero, the competitive ratio of AVR is at least((1 + c1−1/α

c+1)α)α/2.

Puttingc = α − 1, the competitive ratio is at least((1 + (α−1)1−1/α

α)α)α/2, which equals((2 − δ)α)α/2

whereδ = 1 −
(α−1)1−1/α

α .
Note that for largeα (in particular forα ≥ 2, we have that

δ = 1− (α − 1)−1/αα − 1

α

= 1− e(−1/α) ln(α−1)(1 −
1

α
)

≤ 1−

(

1 −
1

α
ln(α − 1)

)

(1 −
1

α
) usingex ≥ 1 + x for x < 0

=
ln(α − 1)

α
+

1

α
−

ln(α − 1)

α2
(2)

Henceδ approaches zero asα approaches infinity.

We remark that our bound((2 − δ)α)α/2 is asymptotically2α−1αα−1/2−o(1) for largeα, and hence
within α1/2+o(1) of the best known upper bound. To see this, by (2), we obtain that

lim
α→∞

(α

lnα

)

δ ≤ lim
α→∞

(

ln(α − 1)

lnα
+

1

lnα
−

ln(α − 1)

α lnα

)

= 1.

6

Similarly,

δ ≥ 1 −
α1−1/α

α
= 1 −

1

e(lnα/α)
≥ 1 −

1

1 + 1
α ln α

=
ln α

α + lnα
,

and hence
lim

α→∞

(α

lnα

)

δ ≥ lim
α→∞

α

α + ln α
= 1.

Thus the expression(2 − δ)ααα/2 = 2α−1αα(1 − δ/2)α ≈ 2α−1ααα−δα/(2 lnα) = 2α−1ααα−1/2−o(1).

5 An Elementary Proof that AVR is 2
α−1

α
α-competitive

This section gives a complete elementary proof thatAVR is 2α−1αα-competitive. This proof uses some
elements of the analysis ofAVR in [4] and some variations on elements of the analysis ofOA in [2]. We
start with the analysis ofAVR on instances consistingof only type-A jobs. The analysis for general instances
then follows along the same lines as in [4], and is included here for completeness.

Lemma 4 For instances consisting of only type-A jobs, AVR is αα-competitive with respect to energy.

Proof: We use an amortized local competitiveness argument. At any time t, either a task arrives or finishes,
or else an infinitesimal interval of timedt elapses andAVR consumessAV R(t)αdt units of energy. We will
define a potential functionφ(t) that satisfies the following properties:

• The potential functionφ(t) has value0 before any jobs arrive and after the last deadline.

• The potential functionφ(t) does not increase as a result ofAVR completing a job,OPT completing
a job, or the release of a job.

• At any timet,

sAV R(t)α +
dφ(t)

dt
≤ ααsOPT (t)α. (3)

Integrating equation 3 over time and using the other two stated properties, we can conclude the desired
result. For a more detailed treatment of amortized local competitiveness arguments, see [3]).

Before we can define the potential function we need to introduce some notation. Lett0 denote the
current time andti denote the time of theith deadline occurring aftert0. Then letIi denote the interval of
time [ti, ti+1). Let τi = ti+1 − ti be the length of intervalIi. Let si denote the speed at whichAVR will
work during intervalIi if no new jobs arrive. This can be computed by summing the densities of active jobs
whose deadline is at or after timeti+1. Let wAV R,i = siτi denote the amount of work thatAVR plans to
complete during intervalIi. Let wOPT,i be the portion of the workAVR allocates to intervalIi thatOPT

has not yet completed. Because all jobs are of type A, all workthat is unfinished byOPT is also unfinished
by AVR. Without loss of generality, we assume that whenOPT is working on a jobj, work is removed
from the termwOPT,i that contains work from jobj with the smallest indexi. That is,OPT removes work
from the earlier intervals first.

We define the potential functionφ(t) as follows:

φ(t) = α
∑

i≥0

sα−1
i (wAV R,i − αwOPT,i) (4)

7

This potential function is a slight modification of the potential function used in [2] to analyze the algorithm
OA. The difference is that the potential function in [2] useswOPT,i to denote the work of jobs unfinished
for OPT with deadline inIi.

Now we show thatφ has the claimed properties. This function is clearly 0 when there are no active jobs.
The completion of a job byOPT also has no effect since the potential is a continuous function of wOPT,i.
The situation whenAVR completes a job is slightly more complicated. Observe that ajob completes under
AVR if and only if the size of the intervalI0 shrinks to 0, i.e. when the current timet0 becomes equal to
t1, which shifts all the indices. At the moment this happensAVR has completed all the work allocated toI0

and hencewAV R,0 = 0. Because all jobs are of type A,OPT has also completed the work allocated toI1

sowOPT,0 = 0. Thus, the potential is continuous even in this case. (This is the only time we use that all the
jobs are of type A.)

Arrival Case: The next case to consider is when a new jobj arrives. First observe that adding a zero work
job with deadlinedj does not change the value of the potential functionφ. Thus, we may assume that the
new job’s deadline istk for somek. Let y be the density of the new job. Then the release increases the
density of intervalsI0, I1, . . . , Ik−1 by y, increasing the weight of intervalIi by yτi for 0 ≤ i ≤ k− 1. This
changes the potential function by

∆φ = α
k−1
∑

i=0

(

wAV R,i + yτi

τi

)α−1

((wAV R,i + yτi) − α(wOPT,i + yτi))

−α

k−1
∑

i=0

(

wAV R,i

τi

)α−1

(wAV R,i − αwOPT,i). (5)

This expression can be rearranged into

k−1
∑

i=0

α

τα−1
i

(

(wAV R,i + yτi)
α−1(wAV R,i − αwOPT,i − (α − 1)yτi)

−wα−1
AV R,i(wAV R,i − αwOPT,i)

)

By making the substitutionsq = wAV R,i, δ = yτi andr = wOPT,i each term of this sum becomes a quantity
shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs complete. Eachsi, includings0,
remains fixed during this time. We have to show

sAV R(t0)
α
− ααsOPT (t0)

α +
dφ(t)

dt
≤ 0 (6)

or equivalently,

sα
0 − ααsOPT (t0)

α +
d

dt
(α
∑

i≥0

sα−1
i (wAV R,i − αwOPT,i)) ≤ 0 (7)

As AVR works,wAV R,0 is decreasing at rates0, andwAV R,i remains fixed for alli ≥ 1. SinceOPT
takes work from a single intervalIi, only one of thewOPT,i changes; let it bewOPT,k. Then equation (7) is
equivalent to

sα
0 − ααsOPT (t0)

α + (−αsα−1
0 s0 + α2sα−1

k sOPT (t0)) ≤ 0

8

Since a job active during one interval is also active in all earlier intervals,sk ≤ s0 and it suffices to show
that

(1− α)sα
0 + α2sα−1

0 sOPT (t0) − ααsOPT (t0)
α
≤ 0

Substitutingz = s0/sOPT (t0) gives

(1 − α)zα + α2zα−1
− αα

≤ 0 (8)

Let u(z) be the polynomial on the left hand side of inequality 8. Note thatu(0) = −αα andu(+∞) =

−∞. In addition, the derivative ofu(z) is 0 at only the pointz = α. Sinceu(α) = 0, we conclude thatu(z)
is non-positive forz ≥ 0, which holds because of the definition ofz. This establishes inequality 6.

Lemma 4 and the argument of Yao, Demers, and Shenker [4] proves the2α−1αα-competitiveness of
AVR. We now give their argument for completeness.

Lemma 5 [4] Among those instances on which AVR has it worst-case competitive ratio, there is a bitonic
instance.

Proof: Consider a worst-case instanceI that is not bitonic. We explain how to transformI into another
worst-case instance that is bitonic. There must be a jobi that is of neither type A nor type B. By the
definition of the types, there has to be some timess, u, with s < u, for which one ofAVR or OPT is ahead
of the other on jobi at times, but behind at timeu. By the intermediate value theorem, there must be a
time t ∈ (s, u) whereAVR andOPT have completed an equal amount of workw on job i. We say that
the lead changes at such a timet. We now create a new instanceI ′ from I by replacing jobi with two
jobs: one with workw released at timeri with deadlinet, and one with workwi − w released at timet
with deadlinedi. It is easy to see that bothAVR andOPT always run at the same speed inI ′ that they did
in I . This transformation however reduces the number of lead changes by one. Since there can only be a
bounded number of lead changes betweenYDS = OPT andAVR, a bounded number of applications of
this transformation leads to a bitonic instance.

Lemma 6 [4] AVR is 2α−1αα-competitive on bitonic instances.

Proof Sketch: Given a bitonic instance, letA be the set of type-A jobs andB be the others. LetAVRA and
AVRB denote the energy attributable toA andB in theAVR schedule, respectively. DefineOPTA and
OPTB similarly with reference to the scheduleOPT.

Next observe that the roles of type-A jobs and type-B jobs canbe swapped by reversing time and swap-
ping the release time and deadline for each job. BothYDS andAVR give the same schedule to the forward
and backwards versions so Lemma 4 implies thatAVR is simultaneouslyαα-competitive with respect to
energy attributable to type-A jobs and energy attributableto type-B jobs.

The proof follows by combining the schedules for the jobs of different types. The optimal cost is clearly
at leastOPTA +OPTB . To bound the cost ofAVR, definesAV R,A(t) andsAV R,B(t) as the speed ofAVR
on type-A and type-B jobs respectively. Then the cost ofAVR is at most

∫

sAV R(t)αdt =

∫

(sAV R,A(t) + sAV R,B(t))α dt

≤

∫

2α−1 (sAV R,A(t)α + sAV R,B(t)α) dt

= 2α−1 (AVRA + AVRB)

≤ 2α−1αα(OPTA + OPTB),

9

which gives the desired ratio.

Thus we reach our final theorem, which is an immediate consequence of Lemma 4, Lemma 5, and
Lemma 6.

Theorem 7 AVR is 2α−1αα-competitive.

The following lemma from [2] was used in the proof of Lemma 4:

Lemma 8 [2] Let q, r, δ ≥ 0 and α ≥ 1. Then (q + δ)α−1(q − αr − (α − 1)δ) − qα−1(q − αr) ≤ 0.

Proof: The lemma is equivalent to showing that

(q − αr)[(q + δ)α−1
− qα−1]− (q + δ)α−1(α − 1)δ ≤ 0

Since[(q + δ)α−1 − qα−1] ≥ 0, it suffices to show that

q[(q + δ)α−1
− qα−1]− (q + δ)α−1(α − 1)δ ≤ 0

Let δ = zq, which impliesz ≥ 0. The left hand side of the above becomes

qα[(1 + z)α−1
− 1]− qα[(1 + z)α−1(α − 1)z]

Factoring outqα and differentiating the rest with respect toz gives

((α − 1)(1 + z)α−2[1 − (α − 1)z] + (1 + z)α−1(−α + 1))

= ((α − 1)(1 + z)α−2[1 − (α − 1)z − (1 + z)]

= −α(α − 1)z(1 + z)α−2

This is non-positive sinceα > 1 andz ≥ 0. Thus, the expression is maximized atz = 0, where it has value
0. This implies the result.

6 Conclusion

Even thoughAVR is not optimally competitive, one could imagine situationswhere a system designer might
still adoptAVR becauseAVR is in some sense fair to each job. This is analogous to the reason that Processor
Sharing (Round Robin) is adopted in some systems even thoughProcessor Sharing is known not to have the
best competitive ratio for the standard QoS measures.

Acknowledgments: We thank Don Coppersmith for helpful discussions.

References

[1] S. Albers, F. Müller, and S. Schmelzer. Speed scaling onparallel processors. InProc. ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 289–298, 2007.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature.JACM, 54(1),
2007.

10

[3] K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Performance Evaluation
Review, 34(4):52–58, 2007.

[4] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. InProc. IEEE Symp.
Foundations of Computer Science, pages 374–382, 1995.

11

