Average Rate Speed Scaling

Nikhil Bansat David P. Bundé Ho-Leung Chah Kirk Pruhsg
May 12, 2008

Abstract

Speed scaling is a power management technique that inviywesmically changing the speed of a
processor. This gives rise to dual-objective schedulimfpi@ms, where the operating system both wants
to conserve energy and optimize some Quality of Service J@@sure of the resulting schedule. Yao,
Demers, and Shenker [4] considered the problem where thecQuaSraint is deadline feasibility and
the objective is to minimize the energy used. They proposashéiine speed scaling algorithm Average
Rate AVR) that runs each job at a constant speed between its reled#s deadline. They showed that
the competitive ratio oAVR is at most(2«)*/2 if a processor running at speadises poweg®. We
show the competitive ratio 0fVR is at least((2 — d)a)*/2, whered is a function of« that approaches
zero asw approaches infinity. This shows that the competitive amslgEAVR, by Yao, Demers, and
Shenker is essentially tight, at least for largeWe also give an alternative proof that the competitive
ratio of AVR is at most(2«)“/2 using a potential function argument. We believe that thedysis is
significantly simpler and more elementary than the origamallysis ofAVR in [4].

1 Introduction

Current processors produced by Intel and AMD allow the spdetie processor to be changed dynami-
cally. Intel's SpeedStep and AMD’s PowerNOW technologitsmathe Windows XP operating system to
dynamically change the speed of such a processor to conseevgy. In this setting, the operating system
must not only have #ob selection policy to determine which job to run, but alscspeed scaling policy to
determine the speed at which the job will be run. In current@Ivbased processors, the speed satisfies the
well-known cube-root-rule, that the speed is approxinyatet cube root of the power. Energy consumption
is power integrated over time. The operating system is fadéda dual objective optimization problem
as it both wants to conserve energy, and optimize some QuidlBervice (QoS) measure of the resulting
schedule.

The first theoretical worst-case study of speed scalingritgns was in the seminal paper [4] by Yao,
Demers, and Shenker. Their QoS objective was deadlinebiigsand the objective was to minimize
the energy used. More precisely, each jotas a release time when it arrives in the system, a work
requiremento;, and a deadlin€; by which the job must be finished. If jolruns at constant speedthen

*IBM T. J. Watson Research Center, nikhil@us.ibm.com

TComputer Science Department, Knox College, dbunde@kdax.8upported in part by Howard Hughes Medical Institute
grant 52005130.

tComputer Science Department, University of Pittsburgthah@cs.pitt.edu.

§Computer Science Department, University of Pittsburghk@ics.pitt.edu. Supported in part by NSF grants CNS-032535
CCF-0514058 and 11S-0534531.

it completes inw; /s units of time. In this setting, an optimal job selection pylis Earliest Deadline First
(EDF). They assumed a speed to power funcfir) = s, wherea > 1 is some constant. If the cube-root
rule holds, thern = 3. Yao, Demers, and Shenker [4] showed that the optimal erfeapible schedule is
found by a simple greedy algorithm that we CaIDS.

Yao, Demers, and Shenker [4] also proposed an online spadidgalgorithm, Average Rate (AVR).
ConceptuallyAVR runs each job at speedv;/(d; — r;) throughout intervalr;, d;], independent of other
jobs. This spreads the work of each job as evenly over timepasilple. By the convexity of the speed to
power function, this even spreading is energy optimal ifitteance consists of only one job. The speed
of the processor at any timeis then just the sum of the speeds of the jobs active at tha, tihmat is
Zi:temdi] dwT AVR is an appealing speed scaling algorithm because in some génperfectly fair to
all jobs, and each job runs as if it were the only job in thednse.

Yao, Demers, and Shenker [4] showed that the competitive, natth respect to energy, ofVR is at
leasta™. They also showed that the competitive ratioddfR, with respect to energy, is at mo@o)® /2.

We now outline this upper bound competitive analysisA®R. A job is defined to be ofype A if the
optimal schedule is always ahead H¥ R on this job. A job is defined to be dfpe B if AVR is always
ahead of the optimal schedule on this job. A schedukditianic if every job is of type A or type B. [4]
observes that there is a worst-case instance that is bjtamicthat the competitive ratio dfVR is at most
22~1 times the competitive ratio okVR on instances of jobs of just one type (A or B). [4] then conside
instances consisting only of type-A jobs. [4] then introdsian auxiliary objective function that is related
to, but is not exactly, the energy used. In a somewhat indoreeuction, [4] shows that with respect to
this auxiliary objective, there is a worst-case instancengtihe optimal schedule is non-preemptive, each
job starts when it is released, and the spans of the jobs atechévhere thepan of job i is the interval

[ri, d;]). Whena = 2, [4] then shows that for such instances, optimizing theléanyiobjective function can

be represented in terms of the eigenvalues of a particderitrduced matrix, and shows how to bound the
largest eigenvalue for such tree-induced matrices. [4¢stihat this argument can be readily generalized to
an arbitrarye, and using Holder’s inequality, give a bound on thenorm of a certain tree-induced matrix
that would replace the eigenvalue argument used iathe2 case.

So the natural question left open is, “What is the exact cditiyeratio of AVR?” Based on simulation
results, [4] conjectured that the competitive ratio®dfR is exactlya®. That is, that the lower bound in [4]
is correct, and intuitively, thalVR can not simultaneously be losing badly on both type-A anéiBpobs.

In the case that the cube-root rule hold$§, = 33 = 27 is the best known competitive ratio for any online
algorithm. If the conjecture from [4] was true, this wouldédédence in favor of adopting th&VR. speed
scaling policy. Not only wouldAVR. have the best known competitive ratio in the case that the-cobt
rule holds, butAVR. is appealingly fair to all jobs.

Unfortunately, in section 4, we show that the upper boundercompetitive ratio from [4] is essentially
tight, at least for larges.. More precisely, we show th&fVR has competitive ratio at lea§t2 — §)«a)*/2,
whered is a function ofa that approaches zero asapproaches infinity. In the case obeying the cube-root
rule, we get a lower bound of approximately 48 on the comipetititio of AVR.

In section 5, we give an alternative proof that the compatitatio of AVR is at most(2«)®/2. Our
analysis uses a potential function argument. We believighiiganalysis is significantly simpler and more
elementary than the original analysisA¥R. in [4]. Our competitive analysis cdhiVR branches off from
the analysis in [4] outlined above after the observation the competitive ratio oAVR is at most2®—!
times the competitive ratio oAVR on jobs of just one type. We give a potential function arguntkat
AVR is a®-competitive on type-A jobs. We include a complete analp$idVR in this paper, including
the elements of the analysis from [4] that we use. In primgiperifying this analysis requires only basic

algebra, except that some basic calculus is used to vemfpdsitivity/negativity of certain polynomials
over particular ranges.

2 Other Related Results

There are now enough speed scaling papers in the literdttatrd is not practical to survey all such papers
here. We limit ourselves to those papers most related toethdts presented here.

Yao, Demers, and Shenker [4] also proposed another onlgedsgraling algorithm, Optimal Available
(OA). The algorithmOA runs at the optimal speed (which can be computed usin¥ ib& algorithm) as-
suming the current state and that no more jobs will be reteistne future. [4] showed that the competitive
ratio of OA is at leasix®. Using a potential function analysis, Bansal, Kimbrel, &ndhs [2] showed that
OA is actuallya®-competitive.

Bansal, Kimbrel, and Pruhs [2] also introduced an onlineedpgcaling algorithm that we cal KP.
Intuitively, BKP tries to mimic the offlineYDS schedule in some way. Formally, at tim@&KP runs at
speect v(t) wherev(t) = maxys¢ %ﬁm andw(t, t1,t2) is the amount of work that has release
time at least;, deadline at most, and that has already arrived by timd2] showed thaBKP is simulta-
neouslyO(1)-competitive for total energy, maximum temperature (asegroooling obeys Newton’s law),
maximum power, and maximum speed. Specifically, [2] shovaad the competitive ratio dBKP with
respect to energy is at maxa /(o — 1))%e.

Albers, Muller, and Schmelzer [1] consider the problem ofling energy-efficient deadline-feasible
schedules on multiprocessors. [1] showed that the offlinblpm is NP-hard, and gave(1)-approximation
algorithms. [1] also gave online algorithms that @@)-competitive when job deadlines occur in the same
order as their release times.

3 Formal Problem Statement

A problem instance consists afjobs. Jobi has a release timg, a deadlinal; > r;, and workw; > 0.

In the online version of the problem, the scheduler learmaith job only at its release time; at this time,
the scheduler also learns the exact work requirement anddgadéline of the job. We assume that time is
continuous. A schedule specifies for each time a job to bemdraapeed at which to run the job. The speed
is the amount of work performed on the job per unit time. A jabwork w run at a constant speedhus
takes®’ time to complete. More generally, the work done on a job dparime period is the integral over
that time period of the speed at which the job is run. A schedifieasibleif for each jobi, work at least

w; is done on job during([r;, d;]. Note that the times at which work is performed on jaio not have to be
contiguous. If a job is run at speadthen the power i€ (s) = s* for some constant > 1.

The energy used during a time period is the integral of thegu@wer that time period. Our objective is
to minimize the total energy used by the schedule.

If Ais a scheduling algorithm, the(7) denotes the schedule output Byon input/. A schedule is
R-competitive for a particular objective function if the ual of that objective function on the schedule is at
mostR times the value of the objective function on an optimal scttedAn online scheduling algorithi
is R-competitive, or has competitive rati®, if A(I) is R-competitive for all instancek.

For a scheduld’, let st ;(t) denote the speed jopbruns at timet in the scheduld’, and lets(t) =
Zj st,j(t) denote the speed of the processor at ttnve schedulel’. If U is a subcollection of jobs, let
s7u(t) denote the sum of the speeds of the job#&/iat timet in the scheduld”. We will also substitute

an algorithm for a schedule in this notation. So for examplg;z(t) is the speed of the algorith@VR at
time ¢t. We useOPT to denote a particular optimal schedule. We say that jelactive between its release
time and its deadline. We call;/(d; — r;) the density of job 7 since this is the job’s work divided by the
length of the interval in which it is active.

Algorithm AVR: At all timest, run the earliest-deadline job at speed r(t) = >, dwT where the sum
is over jobsi active at time.

Consider a fixed optimum schedT. A job is said to be ofype A if

t ¢ '
/ sopr,;(t)dt > / 7 e dt forallr; <t <d;

) PE—
j K3 K3

Intuitively, these are the jobs th@PT runs consistently ahead of their density. Similarly, thesjoftype
B are those thaDPT runs consistently behind their density, meaning they fyatis

t t .
/ sopr(t)dt < / v e forallr; <t < dj.
rj r; @i — T4

In general, a job need not be of either type (or it can also Heodf types, in which cas®@PT executes
exactly as iMAVR). We say an instance stonicif every job is of type A, type B, or both (in which case itis
arbitrarily assigned one of the types). A simple observei@mma 5) shows that KVR is c-competitive
for bitonic instances, then it is algecompetitive in general.

4 ThelLower Bound

We give an instance on whichVR uses up at leagt{2 — §)«)®/2 times the energy used by an energy
optimum solution, wheré is a function ofx that tends to zero asincreases.

Instance Description: For convenience we will work with a continuous version of jble instance. We
say that work arrives at ratgt) at timet to mean that(t)dt units of work arrive during the infinitesimally
small intervallt, t + dt].

The instance consists of two sets of jobsand B. The work in A arrives during the time interval

[0,1— €], at rate
(t) :
a(t) = ————
(1—t)t/e

and all the work in4 has deadline 1. Here> 0 is an arbitrarily small but fixed constant. The work#h
arrives during the interval — 1/¢, 1 — ¢/c] (wherec is a constant that will be set to— 1 later) at rate

C
b(t) - Cl/a(l _ t)l/a

and the work in B arriving at timehas deadling + ¢(1 — ¢).
Lemmal On theinstanceabove, the optimal algorithmusestotal energy at most 21n(1/e).

Proof: It suffices to give some feasible schedule that uses ereigli /c). Consider the schedule that
completes all jobs it by running at speed(t) during[0, 1 — €¢]. The energy usage is

1—e
/O (a(t))?dt = [~ In(1 —)17 = In(1/e)

4

For jobs inB, note that they are released before time 1 and have deadiifies- ¢, 2]. Consider any
timez € [1 + ¢,2]. The jobs with deadline ifil + ¢, 2] are released during — =%, 1 — £]. Their total

amount of work is ‘
/l—e/c b()d /l—e/c c p
t)dt = ——dt
1—(z—1)/c 1—(a—1)/c /(1 —t)1/e

Lety =1+ ¢(1 —t). Thendy = —c - dt, and the amount of work equals

/l—e/c c dt_/l—l-e -1 p _/m 1 p
P TG s Ly A (Y D EVC 2 Y M (Y DV

Therefore, consider the schedule that processes jobsan speeoB(y) = W continuously during
[1+¢,2]. Foranyz € [1 + ¢, 2], the amount of work done by timeequals the amount work with deadline
by z. So the schedule completes each jolBiby its deadline. The energy usage to complete all job3 in
is

2
/1 (b(#))*dt = [In(y — D)2, = In(1/<)

+e€
Since the intervals of execution of work irand B do not overlap, the total energy useiky(1/¢) and

the lemma follows. |
Lemma2 On the instance above, AVR uses total energy at least
a®(1+ m)a In(1/¢) + K, where K isa constant independent of e.

Proof: Consider the work imMA. The work released at timeis scheduled by AVR uniformly during the
interval[t, 1]. Thus, at any time: € [0, 1], the density due to work id is

dena(m):/oza(t)-%dt:/om (1_115)1/&-1;(175:@(@_1)

Now consider the work iB. Note that for work released at timgthe duration between its release time
and deadlineig +c¢(1 —t) —t = (c+ 1)(1 — t). Thus, atany time: € [1 — 1,1 — €], the density due to

work in B is ‘
* c 1
d = . dt
enb(fﬂ) /1_1/0 Cl/a(l _ t)l/a (c + 1)(1 — t)

. C . 1 _ Cl/a
— cl/e(e+1) (1—)t/

During the interva[l — %, 1 — €], AVR runs at speed equal to the total density due to work and B.
Therefore, the energy usage of AVR is at least

/ 7 (demy (8) + demy(£))° dt
1-1/c

e ¢ 1 2+ 1\°
- 1 : — dt 1
/1—1/c (a(+Cl/a(c—|—1)> (1 —t)t/e 1 > (1)

LetY =1+ —zc—- Note thatfor alkt € [1 — 11— ¢],we have that — ¢ < 1/c and hence

(+1)°

2c+1 (1-t)'/* 2c+1 1 c/e+1) _ 2+l
c+1 Y T oc+1 e cae+1)+e T (c+1) e

Then, by factoringrY ——=—, the right side of (1) can be written as

(1 t)l/a’

1—e 1 2c+1 (1—tt/a\"
/ a®Y® 1-— . dt
1—1/0 1—t C+1 Y

l-e aya 1/
Y 2 1 (1-¢
/ 2 (1—a e+l |))dt asl—ar < (1—x)*forz <1
1

- _1/C 1 —1 C + 1 Y
1—e 1
_ ay o o _ n\(1/a)-1 _ a2c¢+1)
= /1—1/ca Y (—1 — Z(1—1) > dt whereZ = Y1)
= a%Y“® [— In(1—1t)+aZ(1 - t)l/a} B
1-1/c
ay o 1/ 1 1 1/
= oYY —lne+ aZe —l—lng—aZ(E)
1 .
> a®Y%In(1l/e) + a®Y® <ln —aZ(-)1/a> sincee > 0
& &
Sincea, ¢, Y andZ are independent efthe lemma follows. [|

Theorem 3 The competitiveratio of AVRisat least ((2 — d)«)“/2, where § isa function of « that tends to
zero as o increases.

)a) /2.

Puttingc = o — 1, the competitive ratio is at Iea$¢1 + &))¢/2, which equals((2 —0)a)*/2

_ 1 laziove
where§ =1 — “———.

Note that for largex (in particular fora. > 2, we have that
—1
§ = 1—(a—1)"YVel=

o

N O LI e

(0%
1 1 .
< 1—(1——1n(a—1)>(1——) usinge®* > 1+ zforz <0
(0% (0%

_ In(av — 1) +l_ ln(ozz—l) @)
a a a

Henced approaches zero asapproaches infinity. [|

We remark that our bounf(2 — 6)a)®/2 is asymptotically2®—!a®~1/2=°(1) for large o, and hence
within o!'/2t°(1) of the best known upper bound. To see this, by (2), we obtain th

. o . In(a — 1) 1 In(a—1)
1 - < 1 — =1.
aggo<lna>5_al—»rgo< Ino +lna alno

6

Similarly, .y
-1/«

621_& :1_;21_ 1 _ Ina ’

o e(lna/a) 1—|—élna a+Ina

and hence N N
lim (—) §> lim — & —1.
a—oo \ln o a—oo o + In o

Thus the expressiof2 — §)*a®/2 = 29 1a®(1 — §/2)* ~ 20 la¥q 9%/ (2Ine) — ga=lyaq—1/2=0(1),

5 An Elementary Proof that AVR is 2% 'a®-competitive

This section gives a complete elementary proof theR is 29! a®-competitive. This proof uses some
elements of the analysis &VR in [4] and some variations on elements of the analysi® Afin [2]. We
start with the analysis cfVR on instances consisting of only type-A jobs. The analysigémeral instances
then follows along the same lines as in [4], and is includee fa completeness.

Lemma 4 For instances consisting of only type-A jobs, AVR is a®-competitive with respect to energy.

Proof: We use an amortized local competitiveness argument. Atiemgytt either a task arrives or finishes,
or else an infinitesimal interval of timé& elapses andVR consumes 4y z(t)*dt units of energy. We will
define a potential function(t) that satisfies the following properties:

e The potential functio(¢) has valud) before any jobs arrive and after the last deadline.

e The potential functio(¢) does not increase as a result’df R completing a jobOPT completing
a job, or the release of a job.

e Atany timet,
sava(® + 24 < a0sgpr(r)e. 3)
Integrating equation 3 over time and using the other tweedtatroperties, we can conclude the desired
result. For a more detailed treatment of amortized localpmtitiveness arguments, see [3]).

Before we can define the potential function we need to inttedsbme notation. Lefy denote the
current time and; denote the time of thé" deadline occurring aftef. Then let; denote the interval of
time [t;,t;+1). Letr; = t;41 — t; be the length of interval;. Let s; denote the speed at whigfVR will
work during intervall; if no new jobs arrive. This can be computed by summing theilea®f active jobs
whose deadline is at or after timg ;. Letwayr,; = s;7; denote the amount of work thafVR plans to
complete during interval;. Letwopr,; be the portion of the worlkVR allocates to interval; thatOPT
has not yet completed. Because all jobs are of type A, all wakis unfinished b PT is also unfinished
by AVR. Without loss of generality, we assume that wi@RT is working on a jobj, work is removed
from the termwo pr; that contains work from job with the smallest index That is,OPT removes work
from the earlier intervals first.

We define the potential functiaf(¢) as follows:

¢(t) =a st H(wavri — owopr,) 4)
i>0

This potential function is a slight modification of the pdiahfunction used in [2] to analyze the algorithm
OA. The difference is that the potential function in [2] usespr; to denote the work of jobs unfinished
for OPT with deadline in;.

Now we show that has the claimed properties. This function is clearly O whemd are no active jobs.
The completion of a job b PT also has no effect since the potential is a continuous fanaf wo pr ;.
The situation whe\VR completes a job is slightly more complicated. Observe thaba@ompletes under
AVR if and only if the size of the intervaly shrinks to 0O, i.e. when the current timgbecomes equal to
t1, which shifts all the indices. At the moment this happAWR has completed all the work allocatedip
and hencevv r o = 0. Because all jobs are of type APT has also completed the work allocated’to
sowopt,0 = 0. Thus, the potential is continuous even in this case. (Htisa only time we use that all the
jobs are of type A.)

Arrival Case: The next case to consider is when a new jabrives. First observe that adding a zero work
job with deadlined; does not change the value of the potential functiorThus, we may assume that the
new job’s deadline ig; for somek. Let y be the density of the new job. Then the release increases the
density of intervaldy, I, . . ., Ix_1 by y, increasing the weight of intervd] by y7; for 0 <i < k— 1. This
changes the potential function by

k—1 a-1
w + Y7,
N Z (AVRTZ Y z) ((wavr,i +ym) — a(wopr, + yTi))
K3

=0
k—1 wa a—1
VR,
—a Z (Z) (wavr,; — awopr,i). (5)
This expression can be rearranged into

k—1 o
> — ((wAVR,i +y7)* N(wavri — awopr; — (@ — 1)y7)
i=0 '1

—why p(WavR; — OMOPT,z')>
By making the substitutions= wayr i, § = y7; andr = wopr,; €ach term of this sum becomes a quantity
shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs compkeachs;, includingsg,
remains fixed during this time. We have to show

do(t
savr(to)” — a®sopr(to)” + % <0 (6)
or equivalently,
sqg — a%sopr(to)* + E(a Z s Nwavr,; — awopr,)) <0 (7)

i>0

As AVR works,way g, is decreasing at rat®, andw 4y r ; remains fixed for ali > 1. SinceOPT
takes work from a single intervd, only one of thewo pr,; changes; let it bavp pr . Then equation (7) is
equivalent to

s — a®sopr(to)® + (—as§ ™ so + a’sp " sopr(to)) <0

Since a job active during one interval is also active in atlieaintervals,s, < sg and it suffices to show
that
(1 — 01)88 + azsg_ISOpT(to) — OzaSOpT(to)a <0

Substituting: = so/sopr(to) gives
(1—a)z%4+ a2t —a* <0 (8)

Let u(z) be the polynomial on the left hand side of inequality 8. Nbi&tt(0) = —a® andu(+o0c) =
—oo. In addition, the derivative ai(z) is O at only the point = «a. Sinceu(a) = 0, we conclude thai(z)
is non-positive forz > 0, which holds because of the definitionofThis establishes inequality 6. R

Lemma 4 and the argument of Yao, Demers, and Shenker [4] pritne2>—1a-competitiveness of
AVR. We now give their argument for completeness.

Lemma5 [4] Among those instances on which AVR has it wor st-case competitiveratio, thereis a bitonic
instance.

Proof: Consider a worst-case instantehat is not bitonic. We explain how to transforiinto another
worst-case instance that is bitonic. There must be a;jtuiat is of neither type A nor type B. By the
definition of the types, there has to be some times with s < u, for which one ofAVR or OPT is ahead

of the other on joly at time s, but behind at time.. By the intermediate value theorem, there must be a
timet € (s,u) whereAVR andOPT have completed an equal amount of warlon jobi. We say that
the lead changes at such a time&. We now create a new instanéefrom I by replacing job: with two
jobs: one with workw released at time; with deadlinet, and one with workw; — w released at time
with deadlined;. It is easy to see that botkVR andOPT always run at the same speed/irthat they did

in I. This transformation however reduces the number of leadgdsmby one. Since there can only be a
bounded number of lead changes betw&&t = OPT and AVR, a bounded number of applications of
this transformation leads to a bitonic instance. |

Lemma6 [4] AVR is2%!a®-competitive on bitonic instances.

Proof Sketch: Given a bitonic instance, let be the set of type-A jobs andl be the others. LeAVR 4 and
AVR g denote the energy attributable toand B in the AVR schedule, respectively. DefirtePT 4 and
OPT g similarly with reference to the schedu e T.

Next observe that the roles of type-A jobs and type-B jobskEaswapped by reversing time and swap-
ping the release time and deadline for each job. Bafls andAVR give the same schedule to the forward
and backwards versions so Lemma 4 implies théR is simultaneouslyr®-competitive with respect to
energy attributable to type-A jobs and energy attributédbkype-B jobs.

The proof follows by combining the schedules for the jobsifiecent types. The optimal cost is clearly
atleastOPT 4 + OPT . To bound the cost dAVR, defines 4y r 4(t) andsav g 5(t) as the speed VR
on type-A and type-B jobs respectively. Then the cosA%R is at most

/SAVR(t)adt = /(SAVR,A(t)+3AVR,B(t))adt

< /2a_1 (savr,A(t)” + savr,p(t)*)dt

= 2°71(AVR4 + AVR3p)
< 2971q%(OPT4 + OPTp),

9

which gives the desired ratio.ll

Thus we reach our final theorem, which is an immediate corsumpof Lemma 4, Lemma 5, and
Lemma 6.

Theorem 7 AVR is 2%~ a®-competitive.

The following lemma from [2] was used in the proof of Lemma 4:
Lemmas8 [2] Letg, 7,6 >0anda > 1. Then (¢ + 8)* (¢ — ar — (a — 1)8) — ¢® (g — ar) < 0.
Proof: The lemma is equivalent to showing that

(g—ar)(g+0)* " —¢* = (g+6)*(a—1)§ <0
Since[(q + 6)*~ ! — ¢®~1] > 0, it suffices to show that
dllg+0)* " =g = (¢+0)*Ha-1)d<0
Letd = zq, which impliesz > 0. The left hand side of the above becomes
¢*[(1+2)*7" =1] = ¢*[(1+ 2)* " (a = 1)2]

Factoring out,® and differentiating the rest with respect4gives

(=D +2) 1= (a= 12+ (1+2)* (—a+1))
=((a—1DA+2)*21-(a—1)z—(1+2)]
= —afa —1)z(1 + 2)*72

This is non-positive sinca > 1 andz > 0. Thus, the expression is maximizedzat 0, where it has value
0. This implies the result. [|

6 Conclusion

Even thoughAVR is not optimally competitive, one could imagine situatiarigere a system designer might
stilladoptAVR becausé\VR is in some sense fair to each job. This is analogous to themehat Processor
Sharing (Round Robin) is adopted in some systems even tHenagiessor Sharing is known not to have the
best competitive ratio for the standard QoS measures.

Acknowledgments. We thank Don Coppersmith for helpful discussions.

References

[1] S. Albers, F. Miller, and S. Schmelzer. Speed scalinganallel processors. IIARroc. ACM Symposium
on Parallel Algorithmsand Architectures (SPAA), pages 289-298, 2007.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to nganenergy and temperaturédACM, 54(1),
2007.

10

[3] K. Pruhs. Competitive online scheduling for server syss. SSGMETRICS Performance Evaluation
Review, 34(4):52-58, 2007.

[4] F. Yao, A. Demers, and S. Shenker. A scheduling modeldduced CPU energy. Iroc. |EEE Symp.
Foundations of Computer Science, pages 374-382, 1995.

11

