Abstract
We show that any compact, orientable, piecewise-linear two-manifold with Euclidean metric can be realized as a flat origami, meaning a set of non-crossing polygons in Euclidean 2-space “plus layers”. This result implies a weak form of a theorem of Burago and Zalgaller: any orientable, piecewise-linear two-manifold can be embedded into Euclidean 3-space “nearly” isometrically. We also correct a mistake in our previously published construction for cutting any polygon out of a folded sheet of paper with one straight cut.
Similar content being viewed by others
References
Demaine, E., Demaine, M., Lubiw, A.: Flattening polyhedra. Manuscript (2001)
Connelly, R.: A flexible sphere. Math. Intell. 1, 130–131 (1978)
Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Contrib. Algebra Geom. 38, 1–10 (1997)
Bern, M., Demaine, E., Eppstein, D., Hayes, B.: A disk-packing algorithm for an origami magic trick. In: Lodi, E., Pagli, L., Santoro, N. (eds.) Preliminary version: Fun with Algorithms, pp. 32–42. Carleton Scientific, Waterloo (1999). Also: T. Hull (ed.) Origami3, pp. 17–28. AK Peters, Wellesley (2002)
Zalgaller, V.A.: Isometric immersions of polyhedra. Dokladi Akademii Nauk USSR T.123 N4 (1958)
Burago, Y.D., Zalgaller, V.A.: Isometric piecewise linear embedding of two-dimensional manifolds with a polyhedral metric in ℝ3. St. Petersb Math. J. 7, 369–385 (1996)
Burago, Y.D., Zalgaller, V.A.: Polyhedral realizations of developments. Vestn. Leningr. Univ. 15, 66–80 (1960)
Nash, J.F.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)
Nash, J.F.: C 1-isometric imbeddings. Ann. Math. 60, 383–396 (1954)
Kuiper, N.H.: On C 1-isometric imbeddings I. Proc. Nederl. Akad. Wetensch., Ser. A 58, 545–556 (1955)
Akopyan, A., Tarasov, A.: PL-analogue of Nash-Kuiper theorem. Talk presented at Numerical geometry, grid generation and scientific computing (NUMGRID2008), Moscow (2008)
Krat, S., Burago, Y.D., Petrunin, A.: Approximating short maps by PL-isometries and Arnold’s “Can you make your dollar bigger” problem. Talk presented at the Fourth International Meeting of Origami Science, Mathematics, and Education, Pasadena (2006)
Zalgaller, V.A.: Some bendings of a long cylinder. J. Math. Sci. 100, 2228–2238 (2000)
Alekseevskij, D.V., Vinogradov, A.M., Lychagin, V.V.: Basic Ideas and Concepts of Differential Geometry. Springer, Berlin (1991). Translated from the Russian by E. Primrose
Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM Symp. Disc. Algorithms, pp. 175–183 (1996)
Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra. Cambridge University Press, Cambridge (2007)
Hull, T.: On the mathematics of flat origamis. Congressus Numerantium 100, 215–224 (1994)
Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Discrete Comput. Geom. 14, 411–428 (1995)
Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Symp. Comp. Geometry (2002)
Lang, R.J.: Origami Design Secrets, Mathematical Methods for an Ancient Art. AK Peters, Wellesley (2003)
Pak, I.: Inflating polyhedral surfaces. Department of Mathematics, MIT (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bern, M., Hayes, B. Origami Embedding of Piecewise-Linear Two-Manifolds. Algorithmica 59, 3–15 (2011). https://doi.org/10.1007/s00453-010-9399-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-010-9399-8