Skip to main content
Log in

Graphical Congestion Games

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider congestion games with linear latency functions in which each player is aware only of a subset of all the other players. This is modeled by means of a social knowledge graph G in which nodes represent players and there is an edge from i to j if i knows j. Under the assumption that the payoff of each player is affected only by the strategies of the adjacent ones, we first give a complete characterization of the games possessing pure Nash equilibria. Namely, if the social graph G is undirected, the game is an exact potential game and thus isomorphic to a classical congestion game. As a consequence, it always converges and possesses Nash equilibria. On the other hand, if G is directed an equilibrium is not guaranteed to exist, but the game is always convergent and an equilibrium can be found in polynomial time if G is acyclic, even if finding the best equilibrium remains an intractable problem.

We then investigate the impact of the limited knowledge of the players on the performance of the game. More precisely, given a bound on the maximum degree of G, for the convergent cases we provide tight lower and upper bounds on the price of stability and asymptotically tight bounds on the price of anarchy. Such results are determined for four natural social cost functions: total and maximum presumed latencies, that is the ones the players believe to pay due to the fact that they are only aware of the existence of their neighbors, and total and maximum perceived latencies, i.e. actually experienced due to all (and not only the known) players using the same facilities.

All the results are then extended to singleton congestion games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory Comput. 4(1), 77–109 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ashlagi, I., Krysta, P., Tennenholtz, M.: Social context games. In: WINE, pp. 675–683 (2008)

  3. Awerbuch, B., Azar, Y., Epstein, A.: Large the price of routing unsplittable flow. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 57–66. ACM, New York (2005)

    Google Scholar 

  4. Babaioff, M., Kleinberg, R., Papadimitriou, C.H.: Congestion games with malicious players. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P. (eds.) ACM Conference on Electronic Commerce, pp. 103–112. ACM, New York (2007)

    Google Scholar 

  5. Beier, R., Czumaj, A., Krysta, P., Vöcking, B.: Computing equilibria for congestion games with (im)perfect information. In: Munro, J.I. (ed.) SODA, pp. 746–755. SIAM, Philadelphia (2004)

    Google Scholar 

  6. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: When ignorance helps: Graphical multicast cost sharing games. Theor. Comput. Sci. 411(3), 660–671 (2010)

    Article  MATH  Google Scholar 

  7. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP (1). Lecture Notes in Computer Science, vol. 4051, pp. 311–322. Springer, Berlin (2006)

    Google Scholar 

  8. Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Fortnow, L., Riedl, J., Sandholm, T. (eds.) ACM Conference on Electronic Commerce, pp. 140–149. ACM, New York (2008)

    Google Scholar 

  9. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.) ESA. Lecture Notes in Computer Science, vol. 3669, pp. 59–70. Springer, Berlin (2005)

    Google Scholar 

  10. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 67–73. ACM, New York (2005)

    Google Scholar 

  11. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: Durand, B., Thomas, W. (eds.) STACS. Lecture Notes in Computer Science, vol. 3884, pp. 349–360. Springer, Berlin (2006)

    Google Scholar 

  12. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: On the inefficiency of equilibria in congestion games. In: Jünger, M., Kaibel, V. (eds.) IPCO. Lecture Notes in Computer Science, vol. 3509, pp. 167–181. Springer, Berlin (2005)

    Google Scholar 

  14. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Babai, L. (ed.) STOC, pp. 604–612. ACM, New York (2004)

    Google Scholar 

  15. Facchini, G., van Megen, F., Borm, P., Tijs, S.: Congestion models and weighted Bayesian potential games. Theory Decis. 42, 193–206 (1997)

    Article  MATH  Google Scholar 

  16. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Selfish unsplittable flows. Theor. Comput. Sci. 348(2–3), 226–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gairing, M., Monien, B., Tiemann, K.: Selfish routing with incomplete information. Theory Comput. Syst. 42(1), 91–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  19. Garg, D., Narahari, Y.: Price of anarchy of network routing games with incomplete information. In: Deng, X., Ye, Y. (eds.) WINE. Lecture Notes in Computer Science, vol. 3828, pp. 1066–1075. Springer, Berlin (2005)

    Google Scholar 

  20. Georgiou, C., Pavlides, T., Philippou A.: Network uncertainty in selfish routing. In: IPDPS. IEEE Press, New York (2006)

    Google Scholar 

  21. Harsanyi, J.C.: Games with incomplete information played by Bayesian players, i. Manag. Sci. 14, 159–182 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harsanyi, J.C.: Games with incomplete information played by Bayesian players, ii. Manag. Sci. 14, 320–332 (1967)

    Article  Google Scholar 

  23. Harsanyi, J.C.: Games with incomplete information played by Bayesian players, iii. Manag. Sci. 14, 468–502 (1967)

    Article  MathSciNet  Google Scholar 

  24. Harsanyi, J.C.: Games with randomly disturbed payoffs. Int. J. Game Theory 21, 1–23 (1973)

    Article  MathSciNet  Google Scholar 

  25. Hoefer, M., Skopalik, A.: Altruism in atomic congestion games. In: Fiat, A., Sanders, P. (eds.) ESA, Lecture Notes in Computer Science, vol. 5757, pp. 179–189. Springer, Berlin (2009)

    Google Scholar 

  26. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Breese, J.S., Koller, D. (eds.) UAI, pp. 253–260. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  27. Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: STOC, pp. 163–170 (2000)

  28. Kleinberg, J.M.: Small-world phenomena and the dynamics of information. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS, pp. 431–438. MIT Press, Cambridge (2001)

    Google Scholar 

  29. Kleinberg, J.M.: The small-world phenomenon and decentralized search. SIAM News 37, 3 (2004)

    Google Scholar 

  30. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)

    Article  Google Scholar 

  31. Koutsoupias, E., Panagopoulou, P.N., Spirakis, P.G.: Selfish load balancing under partial knowledge. In: Kucera, L., Kucera, A. (eds.) MFCS. Lecture Notes in Computer Science, vol. 4708, pp. 609–620. Springer, Berlin (2007)

    Google Scholar 

  32. Kukushkin, N.S. Congestion games revisited. In: Game Theory and Information, EconWPA (2004)

  33. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  35. Nash, J.F. Equilibrium points in n-person games. In: Proceedings of the National Academy of Sciences, vol. 36, pp. 48–49 (1950)

  36. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MATH  Google Scholar 

  37. Roth, A.: The price of malice in linear congestion games. In: WINE, pp. 118–125 (2008)

  38. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  39. Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ. Behav. 47(2), 389–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1), 79–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Moscardelli.

Additional information

This research was partially supported by the grant NRF-RF2009-08 “Algorithmic aspects of coalitional games” and by the PRIN 2008 research project “COGENT COmputational and GamE-theoretic aspects of uncoordinated NeTworks”, funded by the Italian Ministry of University and Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilò, V., Fanelli, A., Flammini, M. et al. Graphical Congestion Games. Algorithmica 61, 274–297 (2011). https://doi.org/10.1007/s00453-010-9417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9417-x

Keywords

Navigation