Skip to main content
Log in

On Independent Sets and Bicliques in Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000) and show that the maximum number of maximal bicliques in a graph on n vertices is Θ(3n/3). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time O(1.3642n), where n is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like problems. In: Proc. of LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Berlin (2002)

    Chapter  Google Scholar 

  2. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145, 11–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite dominofree graphs. Discrete Appl. Math. 86, 125–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J. Comput. 39, 546–563 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted independent sets and its applications. In: Proc. of SODA 2002, pp. 292–298. ACM and SIAM, Philadelphia (2002)

    Google Scholar 

  6. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theor. Comput. Sci. 332, 265–291 (2005)

    Article  MATH  Google Scholar 

  7. Dawande, M., Swaminathan, J., Keskinocak, P., Tayur, S.: On bipartite and multipartite clique problems. J. Algorithms 41, 388–403 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demaine, E.D., Gutin, G., Marx, D., Stege, U.: Open Problems—Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings 07281 (2007), IBFI, Schloss Dagstuhl, Germany

  9. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph in lexicographic order. Theor. Comput. Sci. 337, 240–248 (2005)

    Article  MATH  Google Scholar 

  10. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques of a graph. Discrete Appl. Math. 155, 1826–1832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. In: Proc. of IWPEC 2009. LNCS, vol. 5917, pp. 161–172. Springer, Berlin (2009)

    Google Scholar 

  12. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56 (2009)

  14. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. In: Proc. of AAIM 2007. LNCS, vol. 4508, pp. 47–57. Springer, Berlin (2007)

    Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1996)

    MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent dominating set. ArXiv Report 1009.1381 [CoRR abs] (2010)

  18. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. In: Proc. of WG 2008. LNCS, vol. 5344, pp. 171–182. Springer, Berlin (2008)

    Google Scholar 

  19. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms 29, 174–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: Proc. of FSTTCS 2009. LIPICS, vol. 4, pp. 287–298, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany

  21. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Proc. of SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Berlin (2004)

    Google Scholar 

  22. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71, 199–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. J. Exp. Theor. Artif. Intell. 14, 217–227 (2002)

    Article  MATH  Google Scholar 

  25. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Discrete Algorithms 6, 229–242 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl. Math. 131, 651–654 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Prisner, E.: Bicliques in graphs I: Bounds on their number. Combinatorica 20, 109–117 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer: a faster exact algorithm for dominating set. In: Proc. of STACS 2008. LIPIcs, pp. 657–668. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany

  30. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer. In: Proc. of ESA 2009. LNCS, vol. 5757, pp. 554–565. Springer, Berlin (2009)

    Chapter  Google Scholar 

  31. Wahlström, M.: A tighter bound for counting max-weight solutions to 2SAT instances. In: Proc. of IWPEC 2008. LNCS, vol. 5018, pp. 202–213. Springer, Berlin (2008)

    Google Scholar 

  32. Yannakakis, M.: Node and edge deletion NP-complete problems. In: Proc. of STOC 1978, pp. 253–264. ACM, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Gaspers.

Additional information

A large part of the research was done while Serge Gaspers was visiting the University of Metz. A preliminary version of this paper appeared in the proceedings of WG 2008 [18]. Serge Gaspers acknowledges partial support of NFR and of Conicyt Chile via the project Basal-CMM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspers, S., Kratsch, D. & Liedloff, M. On Independent Sets and Bicliques in Graphs. Algorithmica 62, 637–658 (2012). https://doi.org/10.1007/s00453-010-9474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9474-1

Keywords

Navigation