Abstract
For each sufficiently large n, there exists a unary regular language L such that both L and its complement L c are accepted by unambiguous nondeterministic automata with at most n states, while the smallest deterministic automata for these two languages still require a superpolynomial number of states, at least \(e^{\Omega(\sqrt[3]{n\cdot\ln^{2}n})}\). Actually, L and L c are “balanced” not only in the number of states but, moreover, they are accepted by nondeterministic machines sharing the same transition graph, differing only in the distribution of their final states. As a consequence, the gap between the sizes of unary unambiguous self-verifying automata and deterministic automata is also superpolynomial.
Similar content being viewed by others
References
Anselmo, M., Madonia, M.: Some results on the structure of unary unambiguous automata. Adv. Appl. Math. (2010). doi:10.1016/j.aam.2010.05.003
Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986). Corrigendum: ibid. 302, 497–498 (2003)
Ďuriš, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Proceedings of Symposium on Theoretical Aspects of Computer Science 1997. LNCS, vol. 1200, pp. 117–128. Springer, Berlin (1997)
Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205, 1652–1670 (2007)
Grantham, J.: The largest prime dividing the maximal order of an element of S n . Math. Comput. 64, 407–410 (1995)
Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inf. Comput. 169, 284–296 (2001)
Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal nfa’s over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)
Jirásková, G., Pighizzini, G.: Converting self-verifying automata into deterministic automata. In: Proceedings of Language and Automata Theory and Applications 2009. LNCS, vol. 5457, pp. 458–468. Springer, Berlin (2009)
Landau, E.: Über die Maximalordnung der Permutation gegebenen Grades. Arch. Math. Phys. 3, 92–103 (1903)
Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen I. Teubner, Leipzig/Berlin (1909)
Ljubič, Ju.I.: Bounds for the optimal determinization of nondeterministic autonomous automata. Sib. Mat. Zh. V/2, 337–355 (1964) (in Russian)
Lupanov, O.B.: A comparison of two types of finite automata. Probl. Kibern. 9, 321–326 (1963) (in Russian). German translation: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 329–335 (1966)
Mandl, R.: Precise bounds associated with the subset construction of various classes of nondeterministic finite automata. In: Proceedings of 7th Princeton Conference of Information and System Sciences, pp. 263–267 (1973)
Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theor. Comput. Sci. 330, 349–360 (2005)
Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)
Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of 12th Annual IEEE Symposium on Switching and Automata Theory, pp. 188–191 (1971)
Miller, W.: The maximum order of an element of a finite symmetric group. Am. Math. Mon. 94, 497–506 (1987)
Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20(10), 1211–1214 (1971)
Nicolas, J.-L.: Sur l’ordre maximum d’un élément dans le groupe S n des permutations. Acta Arith. 14, 315–332 (1968)
Okhotin, A.: Unambiguous finite automata over a unary alphabet. In: Proceedings of Mathematical Foundations of Computer Science 2010. LNCS, vol. 6281, pp. 556–567. Springer, Berlin (2010)
Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)
Ramanujan, S.: A proof of Bertrand’s postulate. J. Indian Math. Soc. 11, 181–182 (1919)
Ravikumar, B., Ibarra, O.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)
Szalay, M.: On the maximal order in S n and \(S_{n}^{*}\). Acta Arith. 37, 321–331 (1980)
To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109, 1010–1014 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Geffert, V., Pighizzini, G. Pairs of Complementary Unary Languages with “Balanced” Nondeterministic Automata. Algorithmica 63, 571–587 (2012). https://doi.org/10.1007/s00453-010-9479-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-010-9479-9