Skip to main content

Advertisement

Log in

Pairs of Complementary Unary Languages with “Balanced” Nondeterministic Automata

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

For each sufficiently large n, there exists a unary regular language L such that both L and its complement L c are accepted by unambiguous nondeterministic automata with at most n states, while the smallest deterministic automata for these two languages still require a superpolynomial number of states, at least \(e^{\Omega(\sqrt[3]{n\cdot\ln^{2}n})}\). Actually, L and L c are “balanced” not only in the number of states but, moreover, they are accepted by nondeterministic machines sharing the same transition graph, differing only in the distribution of their final states. As a consequence, the gap between the sizes of unary unambiguous self-verifying automata and deterministic automata is also superpolynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselmo, M., Madonia, M.: Some results on the structure of unary unambiguous automata. Adv. Appl. Math. (2010). doi:10.1016/j.aam.2010.05.003

    Google Scholar 

  2. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986). Corrigendum: ibid. 302, 497–498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ďuriš, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Proceedings of Symposium on Theoretical Aspects of Computer Science 1997. LNCS, vol. 1200, pp. 117–128. Springer, Berlin (1997)

    Google Scholar 

  4. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205, 1652–1670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grantham, J.: The largest prime dividing the maximal order of an element of S n . Math. Comput. 64, 407–410 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inf. Comput. 169, 284–296 (2001)

    Article  MATH  Google Scholar 

  7. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal nfa’s over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jirásková, G., Pighizzini, G.: Converting self-verifying automata into deterministic automata. In: Proceedings of Language and Automata Theory and Applications 2009. LNCS, vol. 5457, pp. 458–468. Springer, Berlin (2009)

    Chapter  Google Scholar 

  9. Landau, E.: Über die Maximalordnung der Permutation gegebenen Grades. Arch. Math. Phys. 3, 92–103 (1903)

    Google Scholar 

  10. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen I. Teubner, Leipzig/Berlin (1909)

    Google Scholar 

  11. Ljubič, Ju.I.: Bounds for the optimal determinization of nondeterministic autonomous automata. Sib. Mat. Zh. V/2, 337–355 (1964) (in Russian)

    Google Scholar 

  12. Lupanov, O.B.: A comparison of two types of finite automata. Probl. Kibern. 9, 321–326 (1963) (in Russian). German translation: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 329–335 (1966)

    Google Scholar 

  13. Mandl, R.: Precise bounds associated with the subset construction of various classes of nondeterministic finite automata. In: Proceedings of 7th Princeton Conference of Information and System Sciences, pp. 263–267 (1973)

    Google Scholar 

  14. Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theor. Comput. Sci. 330, 349–360 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of 12th Annual IEEE Symposium on Switching and Automata Theory, pp. 188–191 (1971)

    Chapter  Google Scholar 

  17. Miller, W.: The maximum order of an element of a finite symmetric group. Am. Math. Mon. 94, 497–506 (1987)

    Article  MATH  Google Scholar 

  18. Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20(10), 1211–1214 (1971)

    Article  Google Scholar 

  19. Nicolas, J.-L.: Sur l’ordre maximum d’un élément dans le groupe S n des permutations. Acta Arith. 14, 315–332 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Okhotin, A.: Unambiguous finite automata over a unary alphabet. In: Proceedings of Mathematical Foundations of Computer Science 2010. LNCS, vol. 6281, pp. 556–567. Springer, Berlin (2010)

    Chapter  Google Scholar 

  21. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  22. Ramanujan, S.: A proof of Bertrand’s postulate. J. Indian Math. Soc. 11, 181–182 (1919)

    Google Scholar 

  23. Ravikumar, B., Ibarra, O.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Szalay, M.: On the maximal order in S n and \(S_{n}^{*}\). Acta Arith. 37, 321–331 (1980)

    MathSciNet  MATH  Google Scholar 

  25. To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109, 1010–1014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pighizzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geffert, V., Pighizzini, G. Pairs of Complementary Unary Languages with “Balanced” Nondeterministic Automata. Algorithmica 63, 571–587 (2012). https://doi.org/10.1007/s00453-010-9479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9479-9

Keywords