Skip to main content

Advertisement

Log in

Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We characterize the planar straight line graphs (Pslgs) that can be augmented to 3-connected and 3-edge-connected Pslgs, respectively. We show that if a Pslg with n vertices can be augmented to a 3-edge-connected Pslg, then at most 2n−2 new edges are always sufficient and sometimes necessary for the augmentation. If the input Pslg is, in addition, already 2-edge-connected, then n−2 new edges are always sufficient and sometimes necessary for the augmentation to a 3-edge-connected Pslg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. Theory Appl. 40(3), 220–230 (2008)

    MATH  Google Scholar 

  2. Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theory IT-31(4), 509–517 (1985)

    Article  MathSciNet  Google Scholar 

  3. Cheng, E., Jordán, T.: Successive edge-connectivity augmentation problems. Math. Program. 84, 577–593 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fialko, S., Mutzel, P.: A new approximation algorithm for the planar augmentation problem. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 260–269. ACM Press, New York (1998)

    Google Scholar 

  6. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5(1), 22–53 (1992)

    Article  Google Scholar 

  7. Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput. 22(1), 11–28 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. García, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane graphs on given point sets. Comput. Geom. Theory Appl. 42, 913–922 (2009)

    MATH  Google Scholar 

  9. García, A., Hurtado, F., Noy, M., Tejel, J.: Augmenting the connectivity of outerplanar graphs. Algorithmica 56(2), 160–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  12. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutwenger, C., Mutzel, P., Zey, B.: On the hardness and approximability of planar biconnectivity augmentation. In: Proc. Conference on Combinatorics and Computing. Lecture Notes in Computer Science, vol. 5609, pp. 249–257. Springer, Berlin (2009)

    Chapter  Google Scholar 

  14. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math. 32, 249–267 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsu, T.-S., Ramachandran, V.: On finding a minimum augmentation to biconnect a graph. SIAM J. Comput. 22(5), 889–912 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, T.-S.: Simpler and faster biconnectivity augmentation. J. Algorithms 45(1), 55–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. J. Comb. Theory, Ser. B 94, 31–77 (2005)

    Article  MATH  Google Scholar 

  18. Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21, 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Proceedings of the 2nd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 519, pp. 286–298. Springer, Berlin (1991)

    Google Scholar 

  20. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Boca Raton (2007) (Chap. 58)

    Google Scholar 

  21. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  22. Mader, W.: A reduction method for edge-connectivity in graphs. Ann. Discrete Math. 3, 145–164 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Inf. Process. Lett. 9(5), 201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagamochi, H., Eades, P.: An edge-splitting algorithm in planar graphs. J. Comb. Optim. 7(2), 137–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nagamochi, H., Ibaraki, T.: Augmenting edge-connectivity over the entire range in \(\tilde {O}(nm)\) time. J. Algorithms 30, 253–301 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications of MA orderings. Discrete Appl. Math. 123, 447–472 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plesník, J.: Minimum block containing a given graph. Arch. Math. 27(6), 668–672 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance of 2- and 3-edge-connected components of graphs I. Discrete Math. 114, 329–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. La Poutré, J.A.: Maintenance of 2- and 3-edge-connected components of graphs II. SIAM J. Comput. 29, 1521–1549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, Berlin (1985)

    Google Scholar 

  31. Rosenthal, A., Goldner, A.: Smallest augmentations to biconnect a graph. SIAM J. Comput. 6, 55–66 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Electron. Notes Discrete Math. 31, 53–56 (2008)

    Article  MathSciNet  Google Scholar 

  33. Souvaine, D.L., Tóth, C.D.: A vertex-face assignment for plane graphs. Comput. Geom. Theory Appl. 42(5), 388–394 (2009)

    MATH  Google Scholar 

  34. Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. (2010, to appear). http://math.ucalgary.ca/~cdtoth/2edgecon20.pdf

  35. Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)

    MATH  Google Scholar 

  36. Végh, L.: Augmenting undirected node-connectivity by one. In: Proceedings of the 42nd Symposium on Theory of Computing, pp. 563–572. ACM Press, New York (2010)

    Google Scholar 

  37. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth.

Additional information

M.A.-J., M.I., K.R., D.L.S., C.D.T. were partially supported by NSF grant CCF-0830734.

Research by C.D. Tóth was conducted while visiting the Rényi Institute, Budapest, and Tufts University, Medford, MA. Supported in part by NSERC grant RGPIN 35586.

Research by P. Valtr was supported by the projects 1M0545 and MSM0021620838 of the Ministry of Education of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Jubeh, M., Ishaque, M., Rédei, K. et al. Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three. Algorithmica 61, 971–999 (2011). https://doi.org/10.1007/s00453-011-9551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9551-0

Keywords