Abstract
We characterize the planar straight line graphs (Pslgs) that can be augmented to 3-connected and 3-edge-connected Pslgs, respectively. We show that if a Pslg with n vertices can be augmented to a 3-edge-connected Pslg, then at most 2n−2 new edges are always sufficient and sometimes necessary for the augmentation. If the input Pslg is, in addition, already 2-edge-connected, then n−2 new edges are always sufficient and sometimes necessary for the augmentation to a 3-edge-connected Pslg.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. Theory Appl. 40(3), 220–230 (2008)
Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theory IT-31(4), 509–517 (1985)
Cheng, E., Jordán, T.: Successive edge-connectivity augmentation problems. Math. Program. 84, 577–593 (1999)
Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976)
Fialko, S., Mutzel, P.: A new approximation algorithm for the planar augmentation problem. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 260–269. ACM Press, New York (1998)
Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5(1), 22–53 (1992)
Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput. 22(1), 11–28 (1993)
García, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane graphs on given point sets. Comput. Geom. Theory Appl. 42, 913–922 (2009)
García, A., Hurtado, F., Noy, M., Tejel, J.: Augmenting the connectivity of outerplanar graphs. Algorithmica 56(2), 160–179 (2010)
Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)
Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)
Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)
Gutwenger, C., Mutzel, P., Zey, B.: On the hardness and approximability of planar biconnectivity augmentation. In: Proc. Conference on Combinatorics and Computing. Lecture Notes in Computer Science, vol. 5609, pp. 249–257. Springer, Berlin (2009)
Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math. 32, 249–267 (1992)
Hsu, T.-S., Ramachandran, V.: On finding a minimum augmentation to biconnect a graph. SIAM J. Comput. 22(5), 889–912 (1993)
Hsu, T.-S.: Simpler and faster biconnectivity augmentation. J. Algorithms 45(1), 55–71 (2002)
Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. J. Comb. Theory, Ser. B 94, 31–77 (2005)
Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21, 1–25 (1996)
Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Proceedings of the 2nd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 519, pp. 286–298. Springer, Berlin (1991)
Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Boca Raton (2007) (Chap. 58)
Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979)
Mader, W.: A reduction method for edge-connectivity in graphs. Ann. Discrete Math. 3, 145–164 (1978)
McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Inf. Process. Lett. 9(5), 201 (1979)
Nagamochi, H., Eades, P.: An edge-splitting algorithm in planar graphs. J. Comb. Optim. 7(2), 137–159 (2003)
Nagamochi, H., Ibaraki, T.: Augmenting edge-connectivity over the entire range in \(\tilde {O}(nm)\) time. J. Algorithms 30, 253–301 (1999)
Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications of MA orderings. Discrete Appl. Math. 123, 447–472 (2002)
Plesník, J.: Minimum block containing a given graph. Arch. Math. 27(6), 668–672 (1976)
La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance of 2- and 3-edge-connected components of graphs I. Discrete Math. 114, 329–359 (1993)
La Poutré, J.A.: Maintenance of 2- and 3-edge-connected components of graphs II. SIAM J. Comput. 29, 1521–1549 (2000)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, Berlin (1985)
Rosenthal, A., Goldner, A.: Smallest augmentations to biconnect a graph. SIAM J. Comput. 6, 55–66 (1977)
Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Electron. Notes Discrete Math. 31, 53–56 (2008)
Souvaine, D.L., Tóth, C.D.: A vertex-face assignment for plane graphs. Comput. Geom. Theory Appl. 42(5), 388–394 (2009)
Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. (2010, to appear). http://math.ucalgary.ca/~cdtoth/2edgecon20.pdf
Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)
Végh, L.: Augmenting undirected node-connectivity by one. In: Proceedings of the 42nd Symposium on Theory of Computing, pp. 563–572. ACM Press, New York (2010)
Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
M.A.-J., M.I., K.R., D.L.S., C.D.T. were partially supported by NSF grant CCF-0830734.
Research by C.D. Tóth was conducted while visiting the Rényi Institute, Budapest, and Tufts University, Medford, MA. Supported in part by NSERC grant RGPIN 35586.
Research by P. Valtr was supported by the projects 1M0545 and MSM0021620838 of the Ministry of Education of the Czech Republic.
Rights and permissions
About this article
Cite this article
Al-Jubeh, M., Ishaque, M., Rédei, K. et al. Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three. Algorithmica 61, 971–999 (2011). https://doi.org/10.1007/s00453-011-9551-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-011-9551-0