Skip to main content
Log in

A Linear-Time Algorithm for Finding Locally Connected Spanning Trees on Circular-Arc Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Suppose that T is a spanning tree of a graph G. T is called a locally connected spanning tree of G if for every vertex of T, the set of all its neighbors in T induces a connected subgraph of G. In this paper, given an intersection model of a circular-arc graph, an O(n)-time algorithm is proposed that can determine whether the circular-arc graph contains a locally connected spanning tree or not, and produce one if it exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, L.: On spanning 2-trees in a graph. Discrete Appl. Math. 74(3), 203–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, L.: The complexity of the locally connected spanning tree problem. Discrete Appl. Math. 131(1), 63–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, G.J., Nemhauser, G.L.: The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebr. Discrete Methods 5, 332–345 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, M.-S.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dietz, P.F.: Intersection graph algorithms. PhD thesis, Computer Science Department, Cornell University, Ithaca, NY (1984)

  7. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43(2–3), 173–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farley, A.M.: Networks immune to isolated failures. Networks 11(3), 255–268 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Networks 12(4), 393–403 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57, p. 314. Elsevier, Amsterdam (2004). With a foreword by Claude Berge. ISBN 0-444-51530-5

    MATH  Google Scholar 

  11. Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. J. Algorithms 9(3), 314–320 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12(4), 459–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, W.L., Spinrad, J.P.: Independent sets in circular-arc graphs. J. Algorithms 19(2), 145–160 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, W.L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. Inf. Process. Lett. 40(3), 123–129 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keil, J.M., Schaefer, D.: An optimal algorithm for finding dominating cycles in circular-arc graphs. Discrete Appl. Math. 36(1), 25–34 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, D.T., Sarrafzadeh, M., Wu, Y.F.: Minimum cuts for circular-arc graphs. SIAM J. Comput. 19(6), 1041–1050 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, C.-C., Chang, G.J., Chen, G.-H.: Locally connected spanning trees in strongly chordal graphs and proper circular-arc graphs. Discrete Math. 307(2), 208–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Masuda, S., Nakajima, K.: An optimal algorithm for finding a maximum independent set of a circular-arc graph. SIAM J. Comput. 17(1), 41–52 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paige, R., Tarjan, R.E.: Tree partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tsai, K.H., Lee, D.T.: k best cuts for circular-arc graphs. Algorithmica 18(2), 198–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-Huey Chen.

Additional information

G.J. Chang was supported in part by the National Science Council under grant NSC-97-2221-E-002-125-MY3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Chen, GH. & Chang, G.J. A Linear-Time Algorithm for Finding Locally Connected Spanning Trees on Circular-Arc Graphs. Algorithmica 66, 369–396 (2013). https://doi.org/10.1007/s00453-012-9641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9641-7

Keywords