Skip to main content
Log in

Computing the Map of Geometric Minimal Cuts

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we consider the following problem of computing a map of geometric minimal cuts (called MGMC problem): Given a graph G=(V,E) and a planar rectilinear embedding of a subgraph H=(V H ,E H ) of G, compute the map of geometric minimal cuts induced by axis-aligned rectangles in the embedding plane. The MGMC problem is motivated by the critical area extraction problem in VLSI designs and finds applications in several other fields. In this paper, we propose a novel approach based on a mix of geometric and graph algorithm techniques for the MGMC problem. Our approach first shows that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Our algorithm for identifying geometric minimal cuts runs in O(n 3logn(loglogn)3) expected time which can be reduced to O(nlogn(loglogn)3) when the maximum size of the cut is bounded by a constant, where n=|V H |. Once geometric minimal cuts are identified we show that the problem can be reduced to computing the L Hausdorff Voronoi diagram of axis aligned rectangles. We present the first output-sensitive algorithm to compute this diagram which runs in O((N+K)log2 NloglogN) time and O(Nlog2 N) space, where N is the number of rectangles and K is the complexity of the Hausdorff Voronoi diagram. Our approach settles several open problems regarding the MGMC problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A map means a partition of the embedding plane (as in trapezoidal map) into cells so that all points in the same cell share the same “closest” geometric minimal cut.

References

  1. Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A combinatorial property of convex sets. Discrete Comput. Geom. 17, 307–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dehne, F., Klein, R.: The Big Sweep: on the power of the wavefront approach to Voronoi diagrams. Algorithmica 17, 19–32 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for Hausdorff Voronoi diagrams. In: Proc. 2006 International Conference on Parallel Processing, pp. 497–504 (2006)

    Google Scholar 

  4. Driscoll, J.R., Sarnak, N., Sleator, D., Tarjan, R.: Making data structures persistent. In: Proceedings of the 18th annual ACM symposium on Theory of computing, pp. 109–121 (1986)

    Google Scholar 

  5. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification—a technique for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferris-Prabhu, A.: Defect size variations and their effect on the critical area of VLSI devices. IEEE J. Solid-State Circuits 20(4), 878–880 (1985)

    Article  Google Scholar 

  8. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995)

    Google Scholar 

  11. Klein, R.: Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science, vol. 400. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  12. Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885–902 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagram. Comput. Geom. 3, 157–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henzinger, M.R., Thorup, M.: Sampling to provide or to bound: with applications to fully dynamic graph algorithms. Random Struct. Algorithms 11, 363–379 (1997)

    Article  MathSciNet  Google Scholar 

  15. Holm, J., Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5, 215–241 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nakamura, Y., ABE, S., Ohsawa, Y., Sakauchi, M.: MD-tree: a balanced hierarchical data structure for multi-dimensional data with highly efficient dynamic characteristics. IEEE Trans. Knowl. Data Eng. 5(4), 682–694 (1993)

    Article  Google Scholar 

  18. Papadopoulou, E.: Critical area computation for missing material defects in VLSI circuits. IEEE Trans. Comput.-Aided Des. 20(5), 583–597 (2001)

    Article  Google Scholar 

  19. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40, 63–82 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Papadopoulou, E.: Higher order Voronoi diagrams of segments for VLSI critical area extraction. In: ISAAC’07. LNCS, vol. 4835, pp. 716–727 (2007)

    Google Scholar 

  21. Papadopoulou, E.: Net-Aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 704–717 (2011)

    Article  Google Scholar 

  22. Papadopoulou, E., Lee, D.T.: The L Voronoi diagram of segments and VLSI applications. Int. J. Comput. Geom. Appl. 11, 503–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Papadopoulou, E., Lee, D.T.: Critical area computation via Voronoi diagrams. IEEE Trans. Comput.-Aided Des. 18(4), 463–474 (1999)

    Article  Google Scholar 

  24. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Papadopoulou, E., Xu, J.: The L Hausdorff Voronoi diagram revisited. In: IEEE-CS Proceedings of Int. Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2011 (2011)

    Google Scholar 

  26. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: STOC’00, pp. 343–350 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous referees for their thoughtful comments and suggestions which significantly improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Xu.

Additional information

The research of J. Xu and L. Xu was supported in part by NSF through a CAREER Award CCF-0546509 and grants IIS-0713489 and IIS-1115220. The research of E. Papadopoulou was supported in part by the Swiss National Science Foundation grant 200021-127137.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Xu, L. & Papadopoulou, E. Computing the Map of Geometric Minimal Cuts. Algorithmica 68, 805–834 (2014). https://doi.org/10.1007/s00453-012-9704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9704-9

Keywords

Navigation