Skip to main content
Log in

The k-Nearest-Neighbor Voronoi Diagram Revisited

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We revisit the k-nearest-neighbor (k-NN) Voronoi diagram and present a new paradigm for its construction. We introduce the k-NN Delaunay graph, which is the graph-theoretic dual of the k-NN Voronoi diagram, and use it as a base to directly compute this diagram in R 2. We implemented our paradigm in the L 1 and L metrics, using segment-dragging queries, resulting in the first output-sensitive, O((n+m)logn)-time algorithm to compute the k-NN Voronoi diagram of n points in the plane, where m is the structural complexity (size) of this diagram. We also show that the structural complexity of the k-NN Voronoi diagram in the L (equiv. L 1) metric is O(min{k(nk),(nk)2}). Efficient implementation of our paradigm in the L 2 (resp. L p , 1<p<∞) metric remains an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note the k-NN Delaunay graph is different from the geometric k-Delaunay graph of [1, 18].

References

  1. Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, C.M., Ramos, P.A.: On structural and graph theoretic properties of higher order Delaunay graphs. Int. J. Comput. Geom. Appl. 19(6), 595–615 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., de Berg, M., Matoušek, J., Schwarzkopf, I.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica 13, 325–345 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(1), 591–604 (1984)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Györi, E.: The number of small semispaces of a finite set of points in the plane. J. Comb. Theory, Ser. A 41, 154–157 (1986)

    Article  MATH  Google Scholar 

  6. Aurenhammer, F.: A new duality result concerning Voronoi diagrams. Discrete Comput. Geom. 5(1), 243–254 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Handbook of Computational Geometry, pp. 201–290. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  8. Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2(4), 363–381 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boissonnat, J.D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9, 329–356 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proceeding of IEEE Symposium on Foundations of Computer Science, pp. 617–626 (2002)

    Google Scholar 

  11. Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤k)-levels in three dimensions. SIAM J. Comput. 30(2), 561–572 (1998)

    Article  Google Scholar 

  12. Chazelle, B.: An algorithm for segment dragging and its implementation. Algorithmica 3, 205–221 (1988)

    Article  MathSciNet  Google Scholar 

  13. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi diagram. IEEE Trans. Comput. 36(11), 1349–1454 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2(1), 195–222 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4(1), 387–421 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelsbrunner, H., Welzl, E.: Constructing belts of two-dimensional arrangements with applications. SIAM J. Comput. 15(1), 271–284 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23(1), 85–98 (2002)

    Article  MATH  Google Scholar 

  19. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14, 255–265 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, D.T.: Two-dimensional Voronoi diagrams in the L p -metric. J. ACM 27(4), 604–618 (1980)

    Article  MATH  Google Scholar 

  21. Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478–487 (1982)

    MATH  MathSciNet  Google Scholar 

  22. Liu, C.-H., Papadopoulou, E., Lee, D.T.: An output-sensitive approach for the L 1/L k-nearest-neighbor Voronoi diagram. In: Proceeding of European Symposium on Algorithms, pp. 70–81 (2011)

    Google Scholar 

  23. Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mulmuley, K.: On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. 6(1), 307–338 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Papadopoulou, E.: Critical area computation for missing material defects in VLSI circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(5), 583–597 (2001)

    Article  Google Scholar 

  26. Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 704–716 (2011)

    Article  Google Scholar 

  27. Papadopoulou, E., Lee, D.-T.: The L Voronoi diagram of segments and VLSI applications. Int. J. Comput. Geom. Appl. 11(5), 503–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ramos, E.: On range reporting, ray shooting, and k-level construction. In: Proceeding of ACM Symposium on Computational Geometry, pp. 390–399 (1999)

    Google Scholar 

  29. Schmitt, D., Spehner, J.C.: Order-k Voronoi diagrams, k-sections, and k-sets. In: Proceeding of Japanese Conference on Discrete and Computational Geometry. LNCS, vol. 1763, pp. 290–304 (1998)

    Chapter  Google Scholar 

  30. Shamos, M., Hoey, D.: Closest point problems. In: Proceeding of IEEE Symposium on Foundations of Computer Science, pp. 151–162 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Der-Tsai Lee.

Additional information

A preliminary version appeared in Proc. European Symposium on Algorithms (ESA) 2011 [22]. This work was supported in part by the Swiss National Science Foundation under Grants SNF-200021-127137, and SNF-20GG21-134355, the latter under the ESF EUROCORES program EuroGIGA/VORONOI, and by the National Science Council, Taiwan under Grants Nos. NSC-99-2911-I-001-506, NSC-99-2911-I-001-511, NSC-101-2221-E-005-019-MY2, and NSC-101-2221-E-005-026-MY2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CH., Papadopoulou, E. & Lee, DT. The k-Nearest-Neighbor Voronoi Diagram Revisited. Algorithmica 71, 429–449 (2015). https://doi.org/10.1007/s00453-013-9809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9809-9

Keywords

Navigation