Skip to main content
Log in

Incentive Compatible Mulit-Unit Combinatorial Auctions: A Primal Dual Approach

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study multi-unit combinatorial auctions with multi-minded buyers. We provide two deterministic, efficient maximizing, incentive compatible mechanisms that improve upon the known algorithms for the problem (Bartal et al., Proceedings of the 9th Conference on Theoretical Aspects of Rationality and Knowledge TARK IX, pp. 72–87, 2003). The first mechanism is an online mechanism for a setting in which buyers arrive one-by-one in an online fashion. We then design an offline mechanism with better performance guarantees based on the online mechanism. We complement the results by lower bounds that show that the performance of our mechanisms is close to optimal. The results are based on an online primal-dual approach that was used extensively recently and reveals the underlying structure of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is equivalent to the assumption of the value Θ in [8].

  2. It is hard to approximate within \(\min\{\frac{n}{k}, O(m^{\frac{1}{k}-\epsilon})\}\)-factor (e.g. [20, 23, 28, 37] in the case of single-unit items.

  3. Single-value buyers are buyers that have a single value for all bundles they desire.

  4. We do not assume that the value m′ is known to the algorithm.

  5. Note that s i might be the empty set.

  6. If v max is unknown to the algorithm, then any deterministic algorithm has an unbounded competitive ratio even if there is only a single item (with multiple copies). To see this, consider the following simple adversarial sequence. In each iteration the next bidder would like a single copy of the (single) item and her bid is the smallest value for which the next copy of item is allocated. If there is no such value then certainly the algorithm is not competitive. Otherwise, the algorithm always allocates all copies, and then the next bidder has value that is very large compared to all previous bids.

References

  1. Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. Internet Math. 1(2), 129–150 (2003)

    Article  MathSciNet  Google Scholar 

  2. Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling online mechanisms to online optimization. In: Proceedings of the 35th ACM Symposium Theory of Computing, STOC, pp. 503–510 (2003)

    Google Scholar 

  3. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In: Proceedings of the 34rd IEEE Symposium Foundations of Computer Science, FOCS, pp. 32–40 (1993)

    Google Scholar 

  4. Azar, Y., Regev, O.: Combinatorial algorithms for the unsplittable flow problem. Algorithmica 44(1), 49–66 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auctions and algorithmic implementation in undominated strategies. J. ACM 4, 1 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for weighted paging. J. ACM 19, 1 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for generalized caching. SIAM J. Comput. 41(2), 391–414 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi-unit combinatorial auctions. In: Proceedings of the 9th Conference on Theoretical Aspects of Rationality and Knowledge TARK IX, pp. 72–87 (2003)

    Chapter  Google Scholar 

  9. Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.: Weak monotonicity characterizes deterministic dominant strategy implementation. Econometrica 74(4), 1109–1132 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. SIAM J. Comput. 40(6), 1587–1622 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing ad-auctions revenue. In: Proceedings of the 15th Annual European Symposium on Algorithms, pp. 253–264 (2007)

    Google Scholar 

  12. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Proceeding of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 293–304 (2006)

    Google Scholar 

  13. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-dual approach. Found. Trends Theor. Comput. Sci. 3(2–3), 93–263 (2009)

    Article  MathSciNet  Google Scholar 

  14. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Buchfuhrer, D., Dughmi, S., Fu, H., Kleinberg, R., Mossel, E., Papadimitriou, C.H., Schapira, M., Singer, Y., Umans, C.: Inapproximability for vcg-based combinatorial auctions. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 518–536 (2010)

    Chapter  Google Scholar 

  16. Clarke, E.H.: Multipart pricing of public goods. Public Choice 2, 17–33 (1971)

    Article  Google Scholar 

  17. Dobzinski, S., Nisan, N.: Mechanisms for multi-unit auctions. J. Artif. Intell. Res. 37, 85–98 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Dobzinski, S., Nisan, N.: Multi-unit auctions: beyond Roberts. In: Proceedings of the 12th ACM Conference on Electronic Commerce, EC, pp. 233–242 (2011)

    Chapter  Google Scholar 

  19. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions. J. Comput. Syst. Sci. 78(1), 15–25 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dobzinski, S., Schapira, M.: Optimal upper and lower approximation bounds for k-duplicates combinatorial auctions. Manuscript (2005)

  21. Green, J.R., Laffont, J.-J.: Characterization of satisfactory mechanisms for the reveraltion of preferences in public goods. Econometrica 45, 427–438 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hastad, J.: Clique is hard to approximate to within n 1−ϵ. Acta Math. 182, 105–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Holzman, R., Kfir-Dahav, N., Monderer, D., Tennenholtz, M.: Bundling equilibrium in combinatorial auctions. Games Econ. Behav. 47, 104–123 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: Proceedings of the 44rd IEEE Symposium Foundations of Computer Science, FOCS, pp. 574–583 (2003)

    Google Scholar 

  26. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. J. ACM 25, 1 (2011)

    Article  MathSciNet  Google Scholar 

  27. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in rapid, approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)

    Article  MathSciNet  Google Scholar 

  29. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. Games Econ. Behav. 64(2), 612–631 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Myerson, R.: Optimal auction design. Math. Oper. Res. 6, 58–73 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35, 166–196 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nisan, N., Ronen, A.: Computationally feasible vcg-based mechanisms. J. Artif. Intell. Res. 29, 19–47 (2007)

    MATH  MathSciNet  Google Scholar 

  33. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  34. Papadimitriou, C.H.: Algorithm, games, and the internet. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 749–753 (2001)

    Google Scholar 

  35. Roberts, K.: The characterization of implementable choice rules. In: Laffont, J.-J. (ed.) Aggregation and Revelation of Preferences, pp. 321–348 (1979)

    Google Scholar 

  36. Rothkhof, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinatorial auctions. Manag. Sci. 44(8), 1131–1147 (1998)

    Article  Google Scholar 

  37. Sandholm, T.: An algorithm for optimal winner determination in combinatorial auctions. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence IJCAI, pp. 542–547 (1999)

    Google Scholar 

  38. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)

    Article  Google Scholar 

  39. Vohra, R.V., de Vries, S.: Combinatorial auctions: a survey. INFORMS J. Comput. 15(3), 284–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rica Gonen.

Additional information

Supported by ISF grant 954/11 and BSF grant 2010426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchbinder, N., Gonen, R. Incentive Compatible Mulit-Unit Combinatorial Auctions: A Primal Dual Approach. Algorithmica 72, 167–190 (2015). https://doi.org/10.1007/s00453-013-9854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9854-4

Keywords

Navigation