Abstract
We study the parameterized complexity of a broad class of problems called “local graph partitioning problems” that includes the classical fixed cardinality problems as max \(k\)-vertex cover, \(k\)-densest subgraph, etc. By developing a technique that we call “greediness-for-parameterization”, we obtain fixed parameter algorithms with respect to a pair of parameters \(k\), the size of the solution (but not its value) and \(\varDelta \), the maximum degree of the input graph. In particular, greediness-for-parameterization improves asymptotic running times for these problems upon random separation (that is a special case of color coding) and is more intuitive and simple. Then, we show how these results can be easily extended for getting standard-parameterization results (i.e., with parameter the value of the optimal solution) for a well known local graph partitioning problem.




Similar content being viewed by others
References
Ageev, A.A., Sviridenko, M.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) Proceedings of Conference on Integer Programming and Combinatorial Optimization, IPCO’99, volume 1610 of Lecture Notes in Computer Science, pp. 17–30. Springer, Berlin (1999)
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)
Cai, L.: Parameter complexity of cardinality constrained optimization problems. Comput. J. 51, 102–121 (2008)
Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of International Workshop on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pp. 239–250. Springer, Berlin (2006)
Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: Proceedings of ACM Symposium on Theory of Computing, STOC’14, pp. 323–332. ACM, New York (2014)
Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of \(k\)-cut and related problems. In: Electronic Notes in Theoretical Computer Science, vol. 78, pp. 205–218. Elsevier, Amsterdam (2003)
Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discrete Appl. Math. 127(3), 643–649 (2003)
Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)
Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity of cutting a few vertices from a graph. CORR, abs/1304.6189 (2013)
Kloks, T.: Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer, Berlin (1994)
Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) Proceedings of International Symposium on Parameterized and Exact Computation, IPEC’12, volume 7535 of Lecture Notes in Computer Science, pp. 242–251. Springer, Berlin (2012)
Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice-Hall, Prentice (1981)
Maneth, S.: Logic and Automata. Lecture 3: Expressiveness of MSO Graph Properties. Logic Summer School (2006)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Shachnai, H., Zehavi, M.: Parameterized algorithms for graph partitioning problems. CoRR, abs/1403.0099 (2014)
Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. ACM Trans. Comput. Log. 12(2) (2011). doi:10.1145/1877714.1877718
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by the French Agency for Research under the program TODO, ANR-09-EMER-010.
Rights and permissions
About this article
Cite this article
Bonnet, É., Escoffier, B., Paschos, V.T. et al. Multi-parameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization. Algorithmica 71, 566–580 (2015). https://doi.org/10.1007/s00453-014-9920-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-014-9920-6