Skip to main content
Log in

Outer 1-Planar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

A Correction to this article was published on 26 September 2021

This article has been updated

Abstract

A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is \({NP}\)-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph \(G\) is o1p, then the algorithm computes an embedding and can augment \(G\) to a maximal o1p graph. Otherwise, \(G\) includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size \(n\) has at most \(\frac{5}{2} n - 4\) edges and there are maximal o1p graphs with \(\frac{11}{5} n - \frac{18}{5}\) edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in \(\fancyscript{O}(n^2)\) area with all vertices in the outer face, a planar visibility representation in \(\fancyscript{O}(n \log n)\) area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

Notes

  1. A short version of the algorithm appeared in [5].

  2. In the rooted version of SPQR-trees the expansion graph \({{\mathrm{\mathrm {expg}}}}(e)\) corresponds to the pertinent graph of \({{\mathrm{\mathrm {refn}}}}(e)\).

References

  1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) Graph Grawing, GD 2013, Lecture Notes in Computer Science, vol. 8242, pp. 83–94. Springer, Berlin (2014)

    Google Scholar 

  2. Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Ill. J. Math. 21, 429–490 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II. reducibility. Illinois Journal of Mathematics 21, 491–567 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Arnborg, S., Proskurowski, A.: Linear time algorithms for \(K\)-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Josef, R.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.) Graph Grawing, GD 2013, Lecture Notes in Computer Science, vol. 8242, pp. 107–118. Springer, Berlin (2014)

    Google Scholar 

  6. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

  7. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F.., Solis-Oba, R., Sack, J.R. (eds.) WADS 2013, pp. 97–108. (2013)

  8. Bernhard, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27(3), 320–331 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biedl, T.C.: Small drawings of outerplanar graphs, series–parallel graphs, and other planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abh. aus dem Math. Seminar der Univ. Hamburg, vol. 53, pp. 41–52. (1983)

  11. Bodlaender, H.L.: A linear-time algorithms for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Grawing, GD 2012, Lecture Notes in Computer Science, vol. 7704, pp. 327–338. Springer, Berlin (2013)

    Google Scholar 

  13. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

  14. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)

  16. Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. J. Comput. Geom. Appl. 22(6), 543–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  19. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM J. Comput. 42(6), 2243–2285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553–579 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time. Theor. Comput. Sci. 513, 65–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eggleton, R.B.: Rectilinear drawings of graphs. Util. Math. 29, 149–172 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math. 307(7–8), 854–865 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frati, F.: Straight-line drawings of outerplanar graphs in \({\fancyscript {O}}\)(dn logn) area. Comput. Geom. 45(9), 524–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  29. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) Graph Drawing, GD 2000. Lecture Notes in Computer Science, vol. 1984, pp. 77–90. Springer, Berlin (2001)

    Google Scholar 

  30. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hliněný, P.: Crossing number is hard for cubic graphs. J. Comb. Theory Ser. B 96(4), 455–471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hong, S.H., Eades, P., Naoki, K., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica (2014). Published online

  33. Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) Computing and Combinatorics Conference, COCOON 2012, Lecture Notes in Computer Science, vol. 7434, pp. 335–346. Springer, Berlin (2012)

    Google Scholar 

  34. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersion and hardness of 1-planarity testing. J. Graph Theory 72, 30–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Process. Lett. 9(5), 229–232 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pach, J., Tóth, G.: Graphs drawn with a few crossings per edge. Combinatorica 17, 427–439 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ. Hamburg, vol. 29, pp. 107–117 (1965)

  39. Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–147. SIAM (1990)

  40. Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. Theory Ser. B 29, 244–271 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5(3), 225–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech. Rep. 298, Department of EECS, Princeton University (1982)

  44. Williamson, S.G.: Depth-first search and Kuratowski subgraphs. J. ACM 31(4), 681–693 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their careful reading and useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bachmaier.

Additional information

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) Grant Br835/18-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auer, C., Bachmaier, C., Brandenburg, F.J. et al. Outer 1-Planar Graphs. Algorithmica 74, 1293–1320 (2016). https://doi.org/10.1007/s00453-015-0002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0002-1

Keywords

Navigation