Skip to main content
Log in

Combinatorial Relaxation Algorithm for the Entire Sequence of the Maximum Degree of Minors

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper presents an efficient “combinatorial relaxation” algorithm for computing the entire sequence of the maximum degree of minors in rational function matrices, whereas the previous algorithms find them separately for a specified order k. The efficiency of the algorithm is based on the discrete concavity related to valuated bimatroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Commault, C., Dion, J.M.: Structure at infinity of linear multivariable systems: a geometric approach. IEEE Trans. Autom. Control AC–27, 693–696 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  4. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  5. Iwata, S.: Computing the maximum degree of minors in matrix pencils via combinatorial relaxation. Algorithmica 36, 331–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iwata, S., Murota, K., Sakuta, I.: Primal-dual combinatorial relaxation algorithms for the maximum degree of subdeterminants. SIAM J. Sci. Comput. 17, 993–1012 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iwata, S., Takamatsu, M.: Computing the maximum degree of minors in mixed polynomial matrices via combinatorial relaxation. Algorithmica 66, 346–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murota, K.: Computing Puiseux-series solutions to determinantal equations via combinatorial relaxation. SIAM J. Comput. 19, 1132–1161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murota, K.: Combinatorial relaxation algorithm for the maximum degree of subdeterminants: computing Smith-McMillan form at infinity and structural indices in Kronecker form. Appl. Algebra Eng. Commun. Comput. 6, 251–273 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Murota, K.: Computing the degree of determinants via combinatorial relaxation. SIAM J. Comput. 24, 765–796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murota, K.: Finding optimal minors of valuated bimatroids. Appl. Math. Lett. 8(4), 37–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin (2000)

    MATH  Google Scholar 

  13. Sato, S.: Combinatorial relaxation algorithm for the entire sequence of the maximum degree of minors in mixed polynomial matrices. JSIAM Lett. 7, 49–52 (2015)

    Article  MathSciNet  Google Scholar 

  14. Tomizawa, N.: On some techniques useful for solution of transportation network problems. Networks 1, 173–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Thanks are due to Kazuo Murota and Takayasu Matsuo for helpful comments on the manuscript. The author would also like to thank the anonymous referee for essential comments. This work is partly supported by JSPS KAKENHI Grant Numbers 25287030, 26280004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, S. Combinatorial Relaxation Algorithm for the Entire Sequence of the Maximum Degree of Minors. Algorithmica 77, 815–835 (2017). https://doi.org/10.1007/s00453-015-0109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0109-4

Keywords

Mathematics Subject Classification

Navigation