Abstract
The fastest known algorithms for computing the R* consensus tree of k rooted phylogenetic trees with n leaves each and identical leaf label sets run in \(O(n^{2} \sqrt{\log n})\) time when \(k = 2\) (Jansson and Sung in Algorithmica 66(2):329–345, 2013) and \(O(k n^{3})\) time when \(k \ge 3\) (Bryant in Bioconsensus, volume 61 of DIMACS series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, pp 163–184, 2003). This paper shows how to compute it in \(O(n^{2})\) time for \(k = 2, O(n^{2} \log ^{4/3} n)\) time for \(k = 3\), and \(O(n^{2} \log ^{k+2} n)\) time for unbounded k.











Similar content being viewed by others
Notes
An example with \(k = 3\) for which Lemma 13 in [14] fails is: \(T_1 = (((a,b),c,d),(e,f));, T_2 = (((b,f),a,c),(d,e));, T_3 = (((a,c),b,e),(d,f));\) (here, trees are expressed using Newick notation; see http://evolution.genetics.washington.edu/phylip/newicktree.html). Then \(\mathcal {R}_{ maj } = \{ab|d,\, ab|e,\, ab|f,\, ac|d,\, ac|e,\, ac|f,\, bc|d,\, bc|e,\, bc|f\}\), and \(A = \{a,b,c\}\) is a strong cluster of \(\mathcal {R}_{ maj }\) by definition. However, condition (1) in Lemma 13 of [14] does not hold for \(i = 2\) as the subtree \(U = (b,f);\) of \(T_2\) rooted at a child of \( lca ^{T_2}(A)\) does not satisfy \(\varLambda (U) \subseteq A\) or \(\varLambda (U) \subseteq L {\setminus } A\).
References
Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proceedings of the 4th Latin American Symposium on Theoretical Informatics (LATIN 2000). Volume 1776 of LNCS, pp. 88–94. Springer, Berlin (2000)
Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)
Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsensus, Volume 61 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 163–184. American Mathematical Society (2003)
Bryant, D., Berry, V.: A structured family of clustering and tree construction methods. Adv. Appl. Math. 27(4), 705–732 (2001)
Chan, T.M., Pǎtraşcu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 161–173. SIAM (2010)
Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An \({O}(n \log n)\) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput. 30(5), 1385–1404 (2000)
Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Cambridge, MA (1990)
Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus methods for inferring species trees from gene trees. Syst. Biol. 58(1), 35–54 (2009)
Ewing, G.B., Ebersberger, I., Schmidt, H.A., von Haeseler, A.: Rooted triple consensus and anomalous gene trees. BMC Evol. Biol. 8, 118 (2008)
Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland, MA (2004)
Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)
Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)
Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in subcubic time. Algorithmica 66(2), 329–345 (2013)
Kannan, S., Warnow, T., Yooseph, S.: Computing the local consensus of trees. SIAM J. Comput. 27(6), 1695–1724 (1998)
Lee, C.-M., Hung, L.-J., Chang, M.-S., Shen, C.-B., Tang, C.-Y.: An improved algorithm for the maximum agreement subtree problem. Inf. Process. Lett. 94(5), 211–216 (2005)
Margush, T., McMorris, F.R.: Consensus \(n\)-trees. Bull. Math. Biol. 43(2), 239–244 (1981)
Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic reconstruction methods on an Indo-European dataset. Trans. Philol. Soc. 103(2), 171–192 (2005)
Semple, C., Steel, M.: Phylogenetics, Volume 24 of Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2003)
Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, London (2010)
Acknowledgments
J.J. was funded by The Hakubi Project at Kyoto University and KAKENHI Grant No. 26330014.
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this article appeared in Proceedings of the 25th International Symposium on Algorithms and Computation (ISAAC 2014), volume 8889 of Lecture Notes in Computer Science, pp. 414–425, Springer International Publishing Switzerland, 2014.
Rights and permissions
About this article
Cite this article
Jansson, J., Sung, WK., Vu, H. et al. Faster Algorithms for Computing the R* Consensus Tree. Algorithmica 76, 1224–1244 (2016). https://doi.org/10.1007/s00453-016-0122-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-016-0122-2