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Abstract. Let D = {T1,T2, . . . ,TD} be a collection of D string doc-
uments of n characters in total, that are drawn from an alphabet set
Σ = [σ]. The top-k document retrieval problem is to preprocess D into
a data structure that, given a query (P [1..p], k), can return the k docu-
ments of D most relevant to pattern P . The relevance is captured using
a predefined ranking function, which depends on the set of occurrences
of P in Td. For example, it can be the term frequency (i.e., the num-
ber of occurrences of P in Td), or it can be the term proximity (i.e., the
distance between the closest pair of occurrences of P in Td), or a pattern-
independent importance score of Td such as PageRank. Linear space and
optimal query time solutions already exist for this problem. Compressed
and compact space solutions are also known, but only for a few rank-
ing functions such as term frequency and importance. However, space
efficient data structures for term proximity based retrieval have been
evasive. In this paper we present the first sub-linear space data structure
for this relevance function, which uses only o(n) bits on top of any com-
pressed suffix array of D and solves queries in time O((p+ k) polylogn).

1 Introduction

Ranked document retrieval, that is, returning the documents that are most rel-
evant to a query, is the fundamental task in Information Retrieval (IR) [6, 1].
Muthukrishnan [18] initiated the study of this family of problems in the more
general scenario where both the documents and the queries are general strings
over arbitrary alphabets, which has applications in several areas [19]. In this sce-
nario, we have a collection D = {T1,T2, . . . ,TD} of D string documents of total
length n, drawn from an alphabet Σ = [σ], and the query is a pattern P [1..p]
over Σ. Muthukrishnan considered a family of problems called thresholded doc-
ument listing: given an additional parameter K, list only the documents where
some function score(P, d) of the occurrences of P in Td exceeded K. For example,
the document mining problem aims to return the documents where P appears at
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least K times, whereas the repeats problem aims to return the documents where
two occurrences of P appear at distance at most K. While document mining has
obvious connections with typical term-frequency measures of relevance [6, 1], the
repeats problem is more connected to various problems in bioinformatics [4, 10].
Also notice that the repeats problem is closely related to the term proximity
based document retrieval in IR field [32, 5, 29, 33, 34]. Muthukrishnan achieved
optimal time for both problems, with O(n) space (in words) if K is specified at
indexing time and O(n log n) if specified at query time.

A more natural version of the thresholded problems, as used in IR, is top-k
retrieval: Given P and k, return k documents with the best score(P, d) values.
Hon et al. [14, 13] gave a general framework to solve top-k problems for a wide
variety of score(P, d) functions, which takes O(n) space, allows k to be specified
at query time, and solves queries in O(p + k log k) time. Navarro and Nekrich
[21] reduced the time to O(p + k), and finally Shah et al. [30] achieved time
O(k) given the locus of P in the generalized suffix tree of D. Recently, Munro
et al. [17] introduced an O(n)-word index, that can find the top-kth document
in O(log k) time, once the locus of P is given.

The problem is far from closed, however. Even the O(n) space (i.e., O(n log n)
bits) is excessive compared to the size of the text collection itself (n log σ bits),
and in data-intensive scenarios it often renders all these solutions impractical by
a wide margin. Hon et al. [14] also introduced a general framework for succinct
indexes, which use o(n) bits6 on top of a compressed suffix array (CSA) [20],
which represents D in a way that also provides pattern-matching functionalities
on it, all within space (|CSA|) close to that of the compressed collection. A CSA
finds the suffix array interval of P [1..p] in time ts(p) and retrieves any cell of the
suffix array or its inverse in time tSA. Hon et al. achieved O(ts(p)+k tSA log3+ε n)
query time, using O(n/ logε n) bits. Subsequent work (see [19, 25]) improved the
initial result up to O(ts(p)+k tSA log2 k logε n) [23], and also considered compact
indexes, which may use o(n log n) bits on top of the CSA. For example, these
achieve O(ts(p) + k tSA log k logε n) query time using n log σ + o(n) further bits
[12], or O(ts(p) + k log∗ k) query time using n logD+ o(n log n) further bits [24].

However, all these succinct and compact indexes work exclusively for the term
frequency (or closely related, e.g., TF-IDF) measure of relevance. For the simpler
case where documents have a fixed relevance independent of P , succinct indexes
achieve O(ts(p) + k tSA log k logε n) query time [3], and compact indexes using
n logD + o(n logD) bits achieve O(ts(p) + k log(D/k)) time [9]. On the other
hand, there have been no succinct nor compact indexes for the term proximity
measure of relevance, tp(P, d) = min{{|i−j| > 0,Td[i..i+p−1] = Td[j..j+p−1] =
P} ∪ {∞}}. In this paper we introduce the first such result as follows.

Theorem 1 Using a CSA plus o(n) bits data structure, one can answer top-k
term proximity queries in O(ts(p) + (log2 n+ k(tSA + log k log n)) log2+ε n) time,
for any constant ε > 0.

6 If D = o(n), which we assume for simplicity in this paper. Otherwise it is
D log(n/D) +O(D) + o(n) bits.



2 Basic Concepts

Let T[1..n] = T1 ◦ T2 ◦ · · ·TD be the text (from an alphabet Σ = [σ] ∪ {$})
obtained by concatenating all the documents in D. Each document is terminated
with a special symbol $, which does not appear anywhere else. A suffix T[i..n]
of T belongs to Td iff i is in the region corresponding to Td in T. Thus, it holds
d = 1 + rankB(i− 1), where B[1..n] is a bitmap defined as B[j] = 1 iff T[j] = $
and rankB(i− 1) is the number of 1s in B[1..i− 1]. This operation is computed
in O(1) time on a representation of B that uses D log(n/D) +O(D) + o(n) bits
[28]. For simplicity, we assume D = o(n), and thus B uses o(n) bits.

Suffix Tree [31] of T is a compact trie containing all of its suffixes, where the
ith leftmost leaf, `i, represents the ith lexicographically smallest suffix. It is also
called the generalized suffix tree of D, GST. Each edge in GST is labeled by a
string, and path(x) is the concatenation of the edge labels along the path from
the GST root to node x. Then path(`i) is the ith lexicographically smallest suffix
of T. The highest node x with path(x) prefixed by P [1..p] is the locus of P , and
is found in time O(p) from the GST root. The GST uses O(n) words of space.

Suffix Array [15] of T, SA[1..n], is defined as SA[i] = n + 1 − | path(`i)|, the
starting position in T of the ith lexicographically smallest suffix of T. The suffix
range of P is the range SA[sp, ep] pointing to the suffixes that start with P ,
T[SA[i]..SA[i] + p − 1] = P for all i ∈ [sp, ep]. Also, `sp (resp., `ep) are the
leftmost (resp., rightmost) leaf in the subtree of the locus of P .

Compressed Suffix Array [20] of T , CSA, is a compressed representation of SA,
and usually also of T. Its size in bits, |CSA|, is O(n log σ) and usually much less.
The CSA finds the interval [sp, ep] of P in time ts(p). It can output any value
SA[i], and even of its inverse permutation, SA−1[i], in time tSA. For example, a
CSA using nHh(T) + o(n log σ) bits [2] gives ts(p) = O(p) and tSA = O(log1+ε n)
for any constant ε > 0, where Hh is the hth order empirical entropy [16].

Compressed Suffix Tree of T, CST, is a compressed representation of GST, where
node identifiers are their corresponding suffix array ranges. The CST can use
o(n) bits on top of a CSA [22] and compute (among others) the lowest common
ancestor (LCA) of two leaves `i and `j , in time O(tSA logε n), and the Weiner link
Wlink(a, v), which leads to the node with path label a◦path(v), in time O(tSA).7

Orthogonal Range Successor/Predecessor. Given n points in [n]×[n], anO(n log n)-
bit data structure can retrieve the point in a given rectangle with lowest y-
coordinate value, in time O(logε n) for any constant ε > 0 [26]. Combined with
standard range tree partitioning, the following result easily follows.

Lemma 1 Given n′ points in [n]× [n]× [n], a structure using O(n′ log2 n) bits
can support the following query in O(log1+ε n) time, for any constant ε > 0: find
the point in a region [x, x′]× [y, y′]× [z, z′] with the lowest/highest x-coordinate.

7 Using O(n/ logε n) bits and no special implementation for operations SA−1[SA[i]±1].



3 An Overview of our Data Structure

The top-k term proximity is related to a problem called range restricted search-
ing, where one must report all the occurrences of P that are within a text range
T[i..j]. It is known that succinct data structures for that problem are unlikely
to exist in general, whereas indexes of size |CSA| + O(n/ logε n) bits do exist
for patterns longer than ∆ = log2+ε n (see [11]). Therefore, our basic strategy
will be to have a separate data structure to solve queries of length p = π, for
each π ∈ {1, . . . ,∆}. Patterns with length p > ∆ can be handled with a single
succinct data structure. More precisely, we design two different data structures
that operate on top of a CSA:

– AnO(n log log n/(π logγ n))-bits structure for handling queries of fixed length
p = π, in time O(ts(p) + k(tSA + log log n+ log k)π logγ n).

– An O(n/ logε n+(n/∆) log2 n)-bits structure for handling queries with p > ∆
in time O(ts(p) +∆(∆+ tSA) + k log k log2ε n(tSA +∆ log1+ε n)).

By building the first structure for every π ∈ {1, . . . ,∆}, any query can
be handled using the appropriate structure. The ∆ structures for fixed pat-
tern length add up to O(n(log log n)2/ logγ n) = o(n/ logγ/2 n) bits, whereas
that for long patterns uses O(n/ logε n) bits. By choosing ε = 4ε = 2γ, the

space is O(n/ logε/4 n) bits. As for the time, the structures for fixed p = π are
most costly for π = ∆, where their time is k(tSA + log log n + log k)∆ logγ n.
Adding up the time of the second structure, we get O(ts(p) + ∆(∆ + k(tSA +
log k log1+ε n) log2ε n), which is upper bounded by O(ts(p) + (log2 n + k(tSA +
log k log n)) log2+ε n). This yields Theorem 1.

Now we introduce some formalization to convey the key intuition. The term
proximity tp(P, d) can be determined by just two occurrences of P in Td, which
are the closest up to ties. We call them critical occurrences, and a pair of two
closest occurrences is a critical pair. There can be multiple critical pairs.

Definition 1 An integer i ∈ [1, n] is an occurrence of P in Td if the suffix
T[i..n] belongs to Td and T[i..i + p − 1] = P [1..p]. The set of all occurrences of
P in T is called Occ(P ).

Definition 2 An occurrence id of P in Td is a critical occurrence if there exists
another occurrence i′d of P in Td such that |id − i′d| = tp(P, d). The pair (id, i

′
d)

is called a critical pair of Td with respect to P .

A key concept in our solution is that of candidate sets of occurrences, which
contain sufficient information to solve the top-k query (note that, due to ties, a
top-k query may have multiple valid answers).

Definition 3 Let Topk(P, k) be a valid answer for the top-k query (P, k). A
set Cand(P, k) ⊆ Occ(P ) is a candidate set of Topk(P, k) if, for each document
identifier d ∈ Topk(P, k), there exists a critical pair (id, i

′
d) of Td with respect to

P such that id, i
′
d ∈ Cand(P, k).



Lemma 2 Given a CSA on D, a valid answer to query (P, k) can be computed
from Cand(P, k) in O(z log z) time, where z = |Cand(P, k)|.

Proof. Sort the set Cand(P, k) and traverse it sequentially. From the occurrences
within each document Td, retain the closest consecutive pair (id, i

′
d), and finally

report k documents with minimum values |id − i′d|. This takes O(z log z) time.
We show that this returns a valid answer set. Since Cand(P, k) is a candidate

set, it contains a critical pair (id, i
′
d) for d ∈ Topk(P, k), so this critical pair

(or another with the same |id − i′d| value) is chosen for each d ∈ Topk(P, k).
If the algorithm returns an answer other than Topk(P, k), it is because some
document d ∈ Topk(P, k) is replaced by another d′ /∈ Topk(P, k) with the same
score tp(P, d′) = |id′ − i′d′ | = |id − i′d| = tp(d). ut

Our data structures aim to return a small candidate set (as close to size k as
possible), from which a valid answer is efficiently computed using Lemma 2.

4 Data Structure for Queries with Fixed p = π ≤ ∆

We build an o(n/π)-bits structure for handling queries with pattern length p = π.

Lemma 3 There is an O(n log log n/(π logγ n))-bits data structure solving queries
(P [1..p], k) with p = π in O(ts(p) + k(tSA + log log n+ log k)π logγ n) time.

The idea is to build an array F[1, n] such that a candidate set of size O(k),
for any query (P, k) with p = π, is given by {SA[i], i ∈ [sp, ep]∧F[i] ≤ k}, [sp, ep]
being the suffix range of P . The key property to achieve this is that the ranges
[sp, ep] are disjoint for all the patterns of a fixed length π. We build F as follows.

1. Initialize F[1..n] = n+ 1.
2. For each pattern Q of length π,

(a) Find the suffix range [α, β] of Q.
(b) Find the list Tr1 ,Tr2 ,Tr3 , . . . of documents in the ascending order of

tp(Q, ·) values (ties broken arbitrarily).
(c) For each document Trκ containing Q at least twice, choose a unique

critical pair with respect to Q, that is, choose two elements j, j′ ∈ [α, β],
such that (irκ , i

′
rκ) = (SA[j],SA[j′]) is a critical pair of Trκ with respect

to Q. Then assign F[j] = F[j′] = κ.

The following observation is immediate.

Lemma 4 For a query (P [1..p], k) with p = π and suffix array range [sp, ep] for
P , the set {SA[j], j ∈ [sp, ep] ∧ F[j] ≤ k} is a candidate set of size at most 2k.

Proof. A valid answer for (P, k) are the document identifiers r1, . . . , rk considered
at construction time for Q = P . For each such document Trκ , 1 ≤ κ ≤ k, we
have found a critical pair (irκ , i

′
rκ) = (SA[j],SA[j′]), for j, j′ ∈ [sp, ep], and set

F[j] = F[j′] = κ ≤ k. All the other values of F[sp, ep] are larger than k (or ∞).
The size of the candidate set is thus at most 2k (or less, if there are less than k
documents where P occurs twice). ut



However, we cannot afford to maintain F explicitly within the desired space
bounds. Therefore, we replace F by a sampled array F′. The sampled array is
built by cutting F into blocks of size π′ = π logγ n and storing the logarithm of
the minimum value for each block. This will increase the size of the candidate
sets by a factor π′. More precisely, F′[1, n/π′] is defined as

F′[j] = dlog minF [(j − 1)π′ + 1..jπ′]e .

Since F′[j] ∈ [0.. log n], the array can be represented using n log log n/ logγ n
bits. We maintain F′ with a multiary wavelet tree [8], which maintains the space
in O(n log log n/ logγ n) bits and, since the alphabet size is logarithmic, supports
in constant time operations rank and select on F′. Operation rank(j, κ) counts
the number of occurrences of κ in F′[1..j], whereas select(j, κ) gives the position
of the jth occurrence of κ in F′.

Query Algorithm. To answer a query (P [1..p], k) with p = π using a CSA and
F′, we compute the suffix range [sp, ep] of P in time ts(p), and then do as follows.

1. Among all the blocks of F overlapping the range [sp, ep], identify those con-
taining an element ≤ 2dlog ke, that is, compute the set

Sblocks = {j, dsp/π′e ≤ j ≤ dep/π′e ∧ F′[j] ≤ dlog ke}.

2. Generate Cand(P, k) = {SA[j′], j ∈ Sblocks ∧ j′ ∈ [(j − 1)π′ + 1, jπ′]}.
3. Find the query output from the candidate set Cand(P, k), using Lemma 2.

For step 1, the wavelet tree representation of F′ generates Sblocks in timeO(1+
|Sblocks|): All the 2t positions8 j ∈ [sp, ep] with F′[j] = t are j = select(rank(sp−
1, t)+i, t) for i ∈ [1, 2t]. We notice if there are no sufficient documents if we obtain
a j > ep, in which case we stop.

The set Cand(P, k) is a candidate set of (P, k), since any j ∈ [sp, ep] with
F[j] ≤ k belongs to some block of Sblocks. Also the number of j ∈ [sp, ep] with
F[j] ≤ 2dlog ke is at most 2 · 2dlog ke ≤ 4k, therefore |Sblocks| ≤ 4k.

Now, Cand(P, k) is of size |Sblocks|π′ = O(kπ′), and it is generated in step 2 in
time O(k tSA π

′). Finally, the time for generating the final output using Lemma 2
is O(kπ′ log(kπ′))) = O(kπ logγ n(log k+ log log n+ log π)). By considering that
π ≤ ∆ = log2+ε n, we obtain Lemma 3.

5 Data Structure for Queries with p > ∆

We prove the following result in this section.

Lemma 5 There is an O(n/ logε n+(n/∆) log2 n)-bits structure solving queries
(P [1..p], k), with p > ∆, in O(ts(p)+∆(∆+tSA)+k log k log2ε n(tSA+∆ log1+ε n))
time.

8 Except for t = 0, which has 2 positions.



We start with a concept similar to that of a candidate set, but weaker in the
sense that it is required to contain only one element of each critical pair.

Definition 4 Let Topk(P, k) be a valid answer for the top-k query (P, k). A set
Semi(P, k) ⊆ [n] is a semi-candidate set of Topk(P, k) if it contains at least one
critical occurrence id of P in Td for each document identifier d ∈ Topk(P, k).

Our structure in this section generates a semi-candidate set Semi(P, k). Then,
a candidate set Cand(P, k) is generated as the union of Semi(P, k) and the set
of occurrences of P that are immediately before and immediately after every
position i ∈ Semi(P, k). This is obviously a valid candidate set. Finally, we apply
Lemma 2 on Cand(P, k) to compute the final output.

5.1 Generating a Semi-candidate Set

This section proves the following result.

Lemma 6 A structure of O(n(log log n)2/ logδ n) bits plus a CSA can generate
a semi-candidate set of size O(k log k logδ n) in time O(tSA k log k logδ n).

Let Leaf(x) (resp., Leaf(y)) be the set of leaves in the subtree of node x (resp.,
y) in GST, Leaf(x\y) = Leaf(x) \ Leaf(y). The following lemma holds.

Lemma 7 The set Semi(path(y), k)∪{SA[j], `j ∈ Leaf(x\y)} is a semi-candidate
set of (path(x), k).

Proof. Let d ∈ Topk(path(x), k), then our semi-candidate set should contain id
or i′d for some critical pair (id, i

′
d). If there is some such critical pair where id or

i′d are occurrences of path(x) but not of path(y), then `j or `j′ are in L(x\y),
for SA[j] = id and SA[j′] = i′d, and thus our set contains it. If, on the other
hand, both id and i′d are occurrences of path(y) for all critical pairs (id, i

′
d), then

tp(path(y), d) = tp(path(x), d), and the critical pairs of path(x) are the critical
pairs of path(y). Thus Semi(y, k) contains id or i′d for some such critical pair. ut

Our approach is to precompute and store Semi(path(y), k) for carefully se-
lected nodes y ∈ GST and k values, so that any arbitrary Semi(path(x), k) set
can be computed efficiently. The succinct framework of Hon et al. [14] is adequate
for this.

Node Marking Scheme. The idea [14] is to mark a set Markg of nodes in GST
based on a grouping factor g: Every gth leaf is marked, and the LCA of any two
consecutive marked leaves is also marked. Then the following properties hold.

1. |Markg| ≤ 2n/g.
2. If there exists no marked node in the subtree of x, then |Leaf(x)| < 2g.
3. If it exists, then the highest marked descendant node y of any unmarked

node x is unique, and |Leaf(x\y)| < 2g.



We use this idea, and a later refinement [12]. Let us first consider a variant
of Lemma 6 where k = κ is fixed at construction time. We use a CSA and an
O(n/ logδ n)-bit CST on it, see Section 2. We choose g = κ log κ log1+δ n and,
for each node y ∈ Markg, we explicitly store a candidate set Semi(path(y), κ) of

size κ. The space required is O(|Markg|κ log n) = O(n/(log κ logδ n)) bits.
To solve a query (P, κ), we find the suffix range [sp, ep], then the locus

node of P is x = LCA(`sp, `ep). Then we find y = LCA(`gdsp/ge, `gbep/gc), the
highest marked node in the subtree of x. Then, by the given properties of
the marking scheme, combined with Lemma 7, a semi-candidate set of size
O(g + κ) = O(κ log κ log1+δ n) can be generated in O(tSAκ log κ log1+δ n) time.

To reduce this time, we employ dual marking scheme [12]. We identify a
larger set Markg′ of nodes, for g′ = κ log κ logδ n. To avoid confusion, we call
these prime nodes, not marked nodes. For each node y′ ∈ Markg′ , we precom-
pute a candidate set Semi(path(y′), κ) of size κ. Let y be the (unique) highest
marked node in the subtree of y′. Then we store κ bits in y′ to indicate which of
the κ nodes stored in Semi(path(y), κ) also belong to Semi(path(y′), κ). By the
same proof of Lemma 7, elements in Semi(path(y′), κ) \ Semi(path(y), κ) must
have a critical occurrence in Leaf(y′\y). Then, instead of explicitly storing the
critical positions id ∈ Semi(path(y′), κ) \ Semi(path(y), κ), we store their left-
to-right position in Leaf(y′\y). Storing κ such positions in leaf order requires
O(κ log(g/κ)) = O(κ log logn) bits, using for example gamma codes. The total
space is O(|Markg′ |κ log log n) = O(n log log n/(log κ logδ)) bits.

Now we can apply the same technique to obtain a semi-candidate set from
Markg′ , yet of smaller sizeO(g′+κ) = O(κ log κ logδ n), in timeO(tSAκ log κ logδ n).

We are now ready to complete the proof Lemma 6. We maintain structures as
described for all the values of κ that are powers of 2, in totalO((n log log n/ logδ n)·∑logD
i=1 1/i) = O(n(log log n)2/ logδ n) bits of space. To solve a query (P, k), we

compute κ = 2dlog ke < 2k and return the semi-candidate set of (P, κ) using the
corresponding structure.

5.2 Generating the Candidate Set

The problem boils down to the task of, given P [1..p] and an occurrence q, finding
the occurrence of P closest to q. In other words, finding the first and the last
occurrence of P in T[q+ 1..n] and T[1..q+ p− 1], respectively. We employ suffix
sampling to obtain the desired space-efficient structure. The idea is to exploit
the fact that, if p > ∆, then for every occurrence q of P there must be an integer
j = ∆dq/∆e (a multiple of ∆) and t ≤ ∆, such that P [1..t] is a suffix of T[1..j]
and P [t + 1..p] is a prefix of T[j + 1..n]. We call q an offset-t occurrence of P .
Then, Cand(P, k) can be computed as follows:

1. Find Semi(P, k) using Lemma 6.
2. For each q ∈ Semi(P, k) and t ∈ [1, ∆], find the offset-t occurrences of P that

are immediately before and immediately after q.
3. The occurrences found in the previous step, along with the elements in

Semi(P, k), constitute Cand(P, k).



In order to perform step 2 efficiently, we maintain the following structures.

– Sparse Suffix Tree (SST): A suffix T[∆i + 1..n] is a sparse suffix, and
the trie of all sparse suffixes is a sparse suffix tree. The sparse suffix range
of a pattern Q is the range of the sparse suffixes in SST that are prefixed
by Q. Given the suffix range [sp, ep] of a pattern, its sparse suffix range
[ssp, sep] can be computed in constant time by maintaining a bitmap B[1..n],
where B[j] = 1 iff T[SA[j]..n] is a sparse suffix. Then ssp = 1 + rankB(sp−
1) and sep = rankB(sp). Since B has n/∆ 1s, it can be represented in
O((n/∆) log∆) bits while supporting rankB operation in constant time for
any ∆ = O(polylog n) [27].

– Sparse Prefix Tree (SPT): A prefix T[1..∆i] is a sparse prefix, and the trie
of the reverses of all sparse prefixes is a sparse prefix tree. The sparse prefix
range of a pattern Q is the range of the sparse prefixes in SPT with Q as a
suffix. The SPT can be represented as a blind trie [7] using O((n/∆) log n)
bits. Then the search for the sparse prefix range of Q can be done in O(|Q|)
time, by descending using the reverse of Q9. Note that the blind trie may
return a fake node when Q does not exist in the SPT.

– Orthogonal Range Successor/Predecessor Search Structure over a
set of dn/∆e points of the form (x, y, z), where the yth leaf in SST corre-
sponds to T[x..n] and the zth leaf in SPT corresponds to T[1..(x− 1)]. The
space needed is O((n/∆) log2 n) bits (recall Lemma 1).

The total space of the structures is O((n/∆) log2 n) bits. They allow com-
puting first offset-t occurrence of P in T[q+ 1..n] as follows: find [sspt, sept] and
[ssp′t, sep

′
t], the sparse suffix range of P [t + 1..p] and the sparse prefix range of

P [1..t], respectively. Then, using an orthogonal range successor query, find the
point (e, ·, ·) with the lowest x-coordinate value in [q + t + 1, n] × [sspt, sept] ×
[ssp′t, sep

′
t]. Then, e−t is the answer. Similarly, the last offset-t occurrence of P in

T[1..q−1] is f−t, where (f, ·, ·) is the point in [1, q+t−1]×[sspt, sept]×[ssp′t, sep
′
t]

with the highest x-coordinate value.
First, we compute all the ranges [sspt, sept] using the SST. This requires

knowing the interval SA[spt, ept] of P [t + 1..p] for all 1 ≤ t ≤ ∆. We compute
these by using the CSA to search for P [∆+ 1..p] (in time at most ts(p)), which
gives [sp∆, ep∆], and then computing [spt−1, ept−1] = Wlink(P [t], [spt, ept]) for
t = ∆ − 1, . . . , 1. Using an o(n)-bits CST (see Section 2), this takes O(∆tSA)
time. Then the SST finds all the [sspt, sept] values in time O(∆). Thus the time
spent on the SST searches is O(ts(p) +∆tSA).

Second, we search the SPT for reverse pattern prefixes of lengths 1 to ∆, and
thus they can all be searched for in time O(∆2). Since the SPT is a blind trie, it
might be either that the intervals [ssp′t, sep

′
t] it returns are the correct interval

of P [1..t], or that P [1..t] does not terminate any sparse prefix. A simple way
to determine which is the case is to perform the orthogonal range search as ex-
plained, asking for the successor e0 of position 1, and check whether the resulting
position, e0 − t, is an occurrence of P , that is, whether SA−1[e0 − t] ∈ [sp, ep].

9 Using perfect hashing to move in constant time towards the children.



This takes O(tSA + log1+ε n) time per verification. Considering the searches plus
verifications, the time spent on the SPT searches is O(∆(∆+ tSA + log1+ε n)).

Finally, after determining all the intervals [sspt, sept] and [ssp′t, sep
′
t], we

perform O(|Semi(P, k)|∆) orthogonal range searches for positions q, in time
O(|Semi(P, k)|∆ log1+ε n), and keep the closest one for each q.

Lemma 8 Given a semi-candidate set Semi(P, k), where p > ∆, a candidate
set Cand(P, k) of size O(|Semi(P, k)|) can be computed in time O(ts(p) +∆(∆+
tSA + |Semi(P, k)| log1+ε n)) using a data structure of O((n/∆) log2 n) bits.

Thus, by combining Lemma 6 using δ = 2ε (so its space is o(n/ logε n) bits)
and Lemma 8, we obtain Lemma 5.

6 Concluding Remarks

We have obtained the first succinct result for top-k term-proximity queries. The
following additional results will be presented in the full version of this paper.

1. Another trade-off for top-k term-proximity queries with space and query
time 2n log σ + o(n log σ) + O(n log log n) bits and O(p + k log k log1+ε n),
respectively. Notice that, when log log n = o(log σ), the trade-off matches
with the best known result for top-k term-frequency queries [13].

2. In a more realistic scenario, score(·, ·) is a weighted sum of PageRank, term-
frequency and term-proximity with predefined non-negative weights [33].
Top-k queries with such ranking functions can be handled using an index of
space 2n log σ + o(n log σ) bits in time O(p+ k log k log4+ε n).
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