Skip to main content
Log in

Primal–Dual Algorithms for Precedence Constrained Covering Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A covering problem is an integer linear program of type \(\min \{c^Tx\mid Ax\ge D,\ 0\le x\le d,\ x \in \mathbb {Z}\}\) where \(A\in \mathbb {Z}^{m\times n}_+\), \(D\in \mathbb {Z}_+^m\), and \(c,d\in \mathbb {Z}_+^n\). In this paper, we study covering problems with additional precedence constraints \(\{x_i\le x_j \ \forall j\preceq i \in \mathcal {P}\}\), where \(\mathcal {P}=([n], \preceq )\) is some arbitrary, but fixed partial order on the items represented by the column-indices of A. Such precedence constrained covering problems (PCCPs) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem, that is, where \(m=1\) and \(d\equiv 1\). Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with \(d\equiv 1\). Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of \(\mathcal {P}\), that is, by the size of a maximum antichain in \(\mathcal {P}\). Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets \(\mathcal {P}\). For the general case with \(d\not \equiv 1\), we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boland, N., Bley, A., Fricke, C., Froyland, G., Sotirov, R.: Clique-based facets for the precedence constrained knapsack problem. Math. Program. 133(1–2), 481–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, A.: Polyhedral results for the precedence-constrained knapsack problem. Discrete Appl. Math. 41(3), 185–201 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carnes, T., Shmoys, D.: Primal–dual schema for capacitated covering problems. In: Andrea, L., Alessandro, P., Giovanni R. (eds) Integer Programming and Combinatorial Optimization, pp. 288–302. Springer, Berlin (2008)

  4. Carr, R., Fleischer, L., Leung, V., Phillips, C.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the Eleventh Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 106–115. Society for Industrial and Applied Mathematics, Philadelphia (2000)

  5. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered pcp and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite subgraph problem. Tech. Rep. MCS04-04, Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel (2004)

  7. Fujito T., Yabuta, T.: Submodular integer cover and its application to production planning. In: Giuseppe, P., Roberto, S.-O. (eds) Approximation and Online Algorithms, pp. 154–166. Springer, Berlin (2005)

  8. Hajiaghayi, M., Jain, K., Konwar, K.,Lau, L., Mandoiu, I., Russell , A., Shvartsman, A., Vazirani V.: The minimum k-colored subgraph problem in haplotyping and DNA primer selection. In: Proceedings of the International Workshop on Bioinformatics Research and Applications (IWBRA) (2006)

  9. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, D., Niemi, K.: On knapsacks, partitions, and a new dynamic programming technique for trees. Math. Oper. Res. 8(1), 1–14 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  12. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-\(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolliopoulos S., Steiner G.: Partially-ordered knapsack and applications to scheduling. In: Algorithms ESA 2002, pp. 612–624. Springer (2002)

  15. Kolliopoulos, S.G., Young, N.E.: Tight approximation results for general covering integer programs. In: 42nd IEEE Symposium on Foundations of Computer Science. Proceedings, pp. 522–528. IEEE (2001)

  16. Koufogiannakis, C., Young, N.E.: Greedy \(\delta \)-approximation algorithm for covering with arbitrary constraints and submodular cost. Algorithmica 66(1), 113–152 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Park, K., Park, S.: Lifting cover inequalities for the precedence-constrained knapsack problem. Discrete Appl. Math. 72(3), 219–241 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 453–461. ACM (2001)

  20. Van de Leensel, R., van Hoesel, C., van de Klundert, J.: Lifting valid inequalities for the precedence constrained knapsack problem. Math. Program. 86(1), 161–185 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Woeginger, G.: On the approximability of average completion time scheduling under precedence constraints. Discrete Appl. Math. 131(1), 237–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wierz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormick, S.T., Peis, B., Verschae, J. et al. Primal–Dual Algorithms for Precedence Constrained Covering Problems. Algorithmica 78, 771–787 (2017). https://doi.org/10.1007/s00453-016-0174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0174-3

Keywords

Navigation