Abstract
Under the PMC model, we consider the (t, k)-diagnosability of a hypercube under the random fault model and conditional fault model separately. A system is called random (t, k)-diagnosable [or conditionally (t, k)-diagnosable] if at least k faulty vertices that can be identified in each iteration under the assumption that there is no any restriction on the fault distribution (or every vertex is adjacent to at least one fault-free vertex), provided that there are at most t faulty vertices, where \(t\ge k\). When the remaining number of faulty vertices is lower than k, all of them can be identified. In this paper, under the PMC and random fault models, we show that the sequential t-diagnosis algorithm for hypercubes proposed by [35] can be extended to the (t, k)-diagnosis algorithm for hypercubes, and we show that the n-dimensional hypercubes are randomly \(\left( \genfrac(){0.0pt}0{n}{\frac{n}{2}},n\right) \)-diagnosable if n is even, and randomly \(\left( 2\cdot \genfrac(){0.0pt}0{n-1}{\frac{n-1}{2}},n\right) \)-diagnosable if n is odd, where \(\genfrac(){0.0pt}0{p}{q}=\frac{p!}{q!(p-q)!}\). Moreover, we propose a conditional (t, k)-diagnosis algorithm for hypercubes by using properties of the conditional fault model and show that n-dimensional hypercubes are conditionally \(\left( \genfrac(){0.0pt}0{n}{\frac{n}{2}},2n-2\right) \)-diagnosable if n is even, and conditionally \(\left( 2\cdot \genfrac(){0.0pt}0{n-1}{\frac{n-1}{2}},2n-2\right) \)-diagnosable if n is odd. Furthermore, under the PMC model, our results improve the previous best low bounds on t under the random and conditional fault models.



Similar content being viewed by others
References
Araki, T., Shibata, Y.: Diagnosability of networks represented by the cartesian product. IEICE Trans. Fundam. E83–A(3), 465–470 (2000)
Araki, T., Shibata, Y.: \((t, k)\)-Diagnosable system: a generalization of the PMC models. IEEE Trans. Comput. 52(7), 971–975 (2003)
Armstrong, J.R., Gray, F.G.: Fault diagnosis in a boolean \(n\) cube array of multiprocessors. IEEE Trans. Comput. 30(8), 587–590 (1981)
Asim, M., Mokhtar, H., Merabti, M.: A cellular approach to fault detection and recovery in wireless sensor networks. In: Proceedings of the Third International Conference on Sensor Technologies and Applications (SENSOR-COMM’09), pp. 352–357. (2009)
Berlekamp, E.R.: Algebraic Coding Theory (Revised). Aegean Park Press, Laguna Hills (1984)
Chang, G.Y., Chang, G.J., Chen, G.H.: Diagnosabilities of regular networks. IEEE Trans. Parallel Distrib. Syst. 16(4), 314–322 (2005)
Chang, G.Y., Chen, G.H., Chang, G.J.: \((t, k)\)-Diagnosis for matching composition networks. IEEE Trans. Comput. 55(1), 88–92 (2006)
Chang, G.Y., Chen, G.H.: \((t, k)\)-Diagnosability of multiprocessor systems with applications to grids and tori. SIAM J. Comput. 37(4), 1280–1298 (2007)
Chang, G.Y., Chen, G.H., Chang, G.J.: \((t, k)\)-Diagnosis for matching composition networks under the MM* model. IEEE Trans. Comput. 56(1), 73–79 (2007)
Chang, G.Y.: Conditional \((t, k)\)-diagnosis under the PMC model. IEEE Trans. Parallel Distrib. Syst. 22(11), 1797–1803 (2011)
Chen, C.A., Hsieh, S.Y.: \((t, k)\)-Diagnosis for component-composition graphs under the MM* model. IEEE Trans. Comput. 60(12), 1704–1717 (2011)
Chen, C.A., Hsieh, S.Y.: Component-composition graphs: (t, k)-diagnosability and its application. IEEE Trans. Comput. 62(2), 1097–1110 (2013)
Caruso, A., Chessa, S., Maestrini, P., Santi, P.: Diagnosability of regular systems. J. Algorithms 1(1), 1–12 (2002)
Chessa, S., Santi, P.: Crash faults identification in wireless sensor networks. Comput. Commun. 25(14), 1273–1282 (2002)
Dahabura, A.T., Masson, G.M.: An \(O(n^{2.5})\) fault identification algorithm for diagnosable systems. IEEE Trans. Comput. C–33(6), 486–492 (1984)
Esfahanian, A.H.: Generalized measures of fault tolerance with application to \(N\)-cube networks. IEEE Trans. Comput. 38(11), 1586–1591 (1989)
Fan, J.: Diagnosability of the MÖbius cubes. IEEE Trans. Parallel Distrib. Syst. 9(9), 923–928 (1998)
Fan, J., Lin, X.: The \(t/k\)-diagnosability of the BC graphs. IEEE Trans. Comput. 54(2), 176–184 (2005)
Feller, W.: Stirling’s formula. In: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. 1, pp. 50–53. John Wiley and Sons, New York (1968) (chapter 2.9)
Fugiwara, H., Kinoshita, K.: On the computational complexity of system diagnosis. IEEE Trans. Comput. 27(10), 881–885 (1978)
Ghafoor, A.: A class of fault-tolerant multiprocessor networks. IEEE Trans. Reliab. 38(1), 5–15 (1989)
Ghafoor, A.: Partitioning of even networks for improved diagnosability. IEEE Trans. Reliab. 39(3), 281–286 (1990)
Hakimi, S.L., Amin, A.T.: Characterization of connection assignment. IEEE Trans. Comput. 23, 86–88 (1974)
Harary, F., Livingston, M.: Independent domination in hypercubes. Appl. Math. Lett. 6, 27–28 (1993)
Hsieh, S.Y., Chen, Y.S.: Strongly diagnosable product networks under the comparison diagnosis model. IEEE Trans. Comput. 57(6), 721–731 (2008)
Hsieh, S.Y., Chuang, T.Y.: The strong diagnosability of regular networks and product networks under the PMC model. IEEE Trans. Parallel Distrib. Syst. 20(3), 367–378 (2009)
Hwang, J., He, T., Kim, Y.: Secure localization with phantom node detection. Ad Hoc Netw. 6(7), 1031–1050 (2008)
Ishida, Y., Adachi, N., Tokumaru, H.: Diagnosability and distinguishability analysis and its applications. IEEE Trans. Reliab. 36(5), 531–538 (1987)
Kavianpour, A., Kim, K.H.: Diagnosabilities of hypercubes under the pessimistic one-step diagnosis strategy. IEEE Trans. Comput. 40(2), 232–237 (1991)
Kavianpour, A., Kim, K.H.: A comparative evaluation of four basic system-level diagnosis strategies for hypercubes. IEEE Trans. Reliab. 41(1), 26–37 (1992)
Kavianpour, A.: Sequential diagnosability of star graphs. Comput. Electr. Eng. 22(1), 37–44 (1996)
Khanna, S., Fuchs, W.K.: A linear time algorithm for sequential diagnosis in hypercubes. J. Parallel Distrib. Comput. 26, 48–53 (1995)
Khanna, S., Fuchs, W.K.: A graph partitioning approach to sequential diagnosis. IEEE Trans. Comput. 46(1), 39–47 (1997)
Kuo, S.P., Kuo, H.J., Tseng, Y.C.: The beacon movement detection problem in wireless sensor networks for localization applications. IEEE Trans. Mob. Comput. 8(10), 1326–1338 (2009)
Kuo, C.L., Yang, M.J., Chang, Y.M., Yeh, Y.M.: High diagnosability of a sequential diagnosis algorithm in hypercubes under the PMC model. J. Supercomput. 61(3), 1116–1134 (2012)
Lai, P.L., Tan, J.M., Chang, C.P., Hsu, L.H.: Conditional diagnosability measures for large multiprocessor systems. IEEE Trans. Comput. 54(2), 165–175 (2005)
Lai, P.L., Tan, J.J.M., Tsai, C.H., Hsu, L.H.: The diagnosability of the matching composition network under the comparison diagnosis model. IEEE Trans. Comput. 53(8), 1064–1069 (2004)
Lin, C.K., Teng, Y.H., Tan, J.J.M., Hsu, L.H.: Local diagnosis algorithms for multiprocessor systems under the comparison diagnosis model. IEEE Trans. Reliab. 62(4), 800–810 (2013)
Malek, M.: A comparison connection assignment for diagnosable of multiprocessor systems. In: Proceedings of the 7th International Symposium on Computer Architecture, pp. 31–36. (1980)
Maeng, J., Malek, M.: A comparison connection assignment for self-diagnosis of multiprocessor systems. In: Proceeding 11th International Symposium on Fault Tolerant Computing, pp. 173–175. (1981)
Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem of diagnosable systems. IEEE Trans. Electron. Comput. EC–16(6), 848–854 (1967)
Robbins, H.: A remark of Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)
Somani, A.K., Peleg, O.: On diagnosability of large fault sets in regular topology-based computer systems. IEEE Trans. Comput. 45(8), 892–902 (1996)
Thompson, T.M.: From Error-Correcting Codes Through Sphere Packings to Simple Groups. Mathematical Association of America, Washington, DC (1983)
van Wee, G.J.M.: Improved sphere bounds on the covering radius of codes. IEEE Trans. Inf. Theory 34(2), 237–245 (1988)
Wang, D.: Diagnosability of enhanced hypercubes. IEEE Trans. Comput. 43(9), 1054–1061 (1994)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
Xu, J., Huang, S.Z.: Sequentially \(t\)-diagnosable system: a characterization and its applications. IEEE Trans. Comput. 44(2), 340–345 (1995)
Xu, J.M., Zhu, Q., Hou, X.M., Zhou, T.: On restricted connectivity and extra connectivity of hypercubes and folded hypercubes. J. Shanghai Jiaotong Univ. (Sci.) E–10(2), 208–212 (2005)
Ye, T.L., Hsieh, S.Y.: A scalable comparison-based diagnosis algorithm for hypercube-like networks. IEEE Trans. Reliab. 62(4), 789–799 (2013)
Yamada, T., Ohtsukab, T., Watanabe, A., Ueno, S.: On sequential diagnosis of multiprocessor systems. Discrete Appl. Math. 146(3), 311–342 (2005)
Zhao, J., Meyer, F.J., Park, N., Lombardi, F.: Sequential diagnosis of processor array systems. IEEE Trans. Reliab. 53(4), 487–498 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by the National Science Council under Grant 103-2221-E-006-135-MY3.
This research was supported in part by (received funding from) the Headquarters of University Advancement at National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, R.O.C.
Rights and permissions
About this article
Cite this article
Wei, CC., Hsieh, SY. Random and Conditional (t, k)-Diagnosis of Hypercubes. Algorithmica 79, 625–644 (2017). https://doi.org/10.1007/s00453-016-0210-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-016-0210-3