Skip to main content
Log in

Approximating the Generalized Minimum Manhattan Network Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the generalized minimum Manhattan network problem (GMMN). The input to this problem is a set R of n pairs of terminals, which are points in \(\mathbb {R}^2\). The goal is to find a minimum-length rectilinear network that connects every pair in R by a Manhattan path, that is, a path of axis-parallel line segments whose total length equals the pair’s Manhattan distance. This problem is a natural generalization of the extensively studied minimum Manhattan network problem (MMN) in which R consists of all possible pairs of terminals. Another important special case is the well-known rectilinear Steiner arborescence problem (RSA). As a generalization of these problems, GMMN is NP-hard. No approximation algorithms are known for general GMMN. We obtain an \(O(\log n)\)-approximation algorithm for GMMN. Our solution is based on a stabbing technique, a novel way of attacking Manhattan network problems. Some parts of our algorithm generalize to higher dimensions, yielding a simple \(O(\log ^{d+1} n)\)-approximation algorithm for the problem in arbitrary fixed dimension d. As a corollary, we obtain an exponential improvement upon the previously best \(O(n^\varepsilon )\)-ratio for MMN in d dimensions (ESA 2011). En route, we show that an existing \(O(\log n)\)-approximation algorithm for 2D-RSA generalizes to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aronov, B., Ezra, E., Sharir, M.: Small-size \(\varepsilon \)-nets for axis-parallel rectangles and boxes. In: Proceedings of the 41st Annual ACM Symposium on Theory Computing (STOC’09), pp. 639–648 (2009)

  2. Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: Proceedings 38th Annual Symposium on Foundations of Computer Science (FOCS’97), pp. 554–563 (1997)

  3. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Program. 97(1–2), 43–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bing, L., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Comb. Optim. 4(3), 357–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom. 14(1), 463–479 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chin, F., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discret. Comput. Geom. 45, 701–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cong, J., Leung, K.-S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: Proceedings of the 30th IEEE Conference on Design Automation (DAC’93), pp. 606–611 (1993)

  8. Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, A., Fleszar, K., Kobourov, S.G., Spoerhase, J., Veeramoni, S., Wolff, A.: Approximating the generalized minimum Manhattan network problem. In: Cai, L., Cheng, S.-W., Lam, T.W. (eds.) Proceedings of the 24th Annual International Symposium on Algorithms and Computation (ISAAC’13), volume 8283 of LNCS, pp. 722–732. Springer (2013)

  10. Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.: Approximating minimum Manhattan networks in higher dimensions. Algorithmica 71(1), 36–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Funke, S., Seybold, M.P.: The generalized minimum Manhattan network problem—scale-diversity aware approximation and a primal-dual algorithm. In: Proceedings of the 2nd Canadian Conference on Computing Geometry (CCCG’14), Halifax, Nova Scotia (2014)

  13. Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the Earth Mover’s Distance. In Proceedings of the 23rd European Workshop on Computational Geometry (EuroCG’07), pp. 174–177, Graz, Austria (2007)

  14. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nord. J. Comput. 8, 219–232 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Gudmundsson, J., Narasimhan, G., Smid, M.: Applications of geometric spanner networks. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp 1–99. Springer (2008)

  16. Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximate minimum Manhattan networks. Int. J. Comput. Geom. Appl. 21(3), 331–350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knauer, C., Spillner, A.: A fixed-parameter algorithm for the minimum Manhattan network problem. J. Comput. Geom. 2(1), 189–204 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Muñoz, X., Seibert, S., Unger, W.: The minimal Manhattan network problem in three dimensions. In: Das, S., Uehara, R. (eds.) Proceedings of the 3rd International Workshop on Algorithms and Computing (WALCOM’09), volume 5431 of LNCS, pp. 369–380. Springer (2009)

  19. Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et Algorithmes. PhD thesis, Université de la Méditerranée, (2005). http://www.lif-sud.univ-mrs.fr/~karim/download/THESE_NOUIOUA.pdf

  20. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  21. Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost-minimal trees in directed acyclic graphs. Z. Oper. Res. 18(1), 59–67 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Rao, S., Sadayappan, P., Hwang, F., Shor, P.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shi, W., Chen, S.: The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 35(3), 729–740 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Yao, A.C.C.: On constructing minimum spanning trees in \(k\)-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zachariasen, M.: On the approximation of the rectilinear Steiner arborescence problem in the plane. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4529. (2000)

Download references

Acknowledgements

We thank Michael Kaufmann for his hospitality and his enthusiasm during our respective stays in Tübingen. We thank Esther Arkin, Alon Efrat, Joe Mitchell, and Andreas Spillner for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Spoerhase.

Additional information

A preliminary version of this paper appeared in Proc. 24th International Symposium on Algorithms and Complexity (ISAAC’13), volume 8283 of Lect. Notes Comput. Sci., pp. 722–732. This work was supported by the ESF EuroGIGA project GraDR (DFG Grant Wo 758/5-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Fleszar, K., Kobourov, S. et al. Approximating the Generalized Minimum Manhattan Network Problem. Algorithmica 80, 1170–1190 (2018). https://doi.org/10.1007/s00453-017-0298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0298-0

Keywords

Navigation