Abstract
Given an undirected simple graph G, a set of vertices is an r-clique transversal if it has at least one vertex from every r-clique. Such sets generalize vertex covers as a vertex cover is a 2-clique transversal. Perfect graphs are a well-studied class of graphs on which a minimum weight vertex cover can be obtained in polynomial time. Further, an r-clique transversal in a perfect graph is also a set of vertices whose deletion results in an \((r-1)\)-colorable graph. In this work, we study the problem of finding a minimum weight r-clique transversal in a perfect graph. This problem is known to be \(\mathsf {NP}\)-hard for \(r \ge 3\) and admits a straightforward r-approximation algorithm. We describe two different \(\frac{r+1}{2}\)-approximation algorithms for the problem. Both the algorithms are based on (different) linear programming relaxations. The first algorithm employs the primal–dual method while the second uses rounding based on a threshold value. We also show that the problem is APX-hard and describe hardness results in the context of parameterized algorithms and kernelization.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abu-Khzam, F.N.: A kernelization algorithm for \(d\)-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)
Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Parameterized and Exact Computation, Volume 4169 of Lecture Notes in Computer Science, pp. 264–275. Springer, Berlin (2006)
Berge, C.: Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind (zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg Mathematisch-Naturwissenschaftliche Reihe 10, 114–115 (1961)
Berry, L.A., Kennedy, W.S., King, A.D., Li, Z., Reed, B.A.: Finding a maximum-weight induced \(k\)-partite subgraph of an \(i\)-triangulated graph. Discret. Appl. Math. 158(7), 765–770 (2010)
Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vusković, K.: Recognizing berge graphs. Combinatorica 25(2), 143–186 (2005)
Cygan, M., Fomin, F .V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)
Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67, 789–807 (2003)
Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)
Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)
Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)
Guruswami, V., Lee, E.: Inapproximability of feedback vertex set for bounded length cycles. Electron. Colloq. Comput. Complex. 21, 6 (2014)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier, Amsterdam (2004)
Hochbaum, D .S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Co, Boston (1997)
Iwata, Y., Oka, K., Yuichi, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of the ACM–SIAM Symposium on Discrete Algorithms, pp. 1749–1761 (2014)
Impagliazzo, R., Paturi, R.: Complexity of k-SAT. In: Proceedings of IEEE Conference on Computational Complexity, pp. 237–240 (1999)
Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016)
Krithika, R., Narayanaswamy, N.S.: Another disjoint compression algorithm for odd cycle transversal. Inf. Process. Lett. 113(22–24), 849–851 (2013)
Krithika, R., Narayanaswamy, N.S.: Parameterized algorithms for \((r, l)\)-partization. J. Graph Algorithms Appl. 17(2), 129–146 (2013)
Knuth, D.E.: The sandwich theorem. Electron. J. Comb. 1(A1), 1–48 (1994)
Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\epsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)
Lokshtanov, D., Narayanaswamy, N .S., Raman, V., Ramanujan, M .S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)
Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discret. Math. 2(3), 253–267 (1972)
Lovász, L.: On Minimax Theorems of Combinatorics. Ph.D thesis, Matemathikai Lapok, vol. 26, pp. 209–264 (1975)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6(1), 48–61 (1974)
Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)
Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301 (2004)
Wagler, A.: Critical and anticritical edges in perfect graphs. In: Graph-Theoretic Concepts in Computer Science, Volume 2204 of Lecture Notes in Computer Science, pp. 317–327 (2001)
Williamson, D .P., Shmoys, D .B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this paper appeared in the proceedings of the 22nd European Symposium on Algorithms (ESA 2014).
Rights and permissions
About this article
Cite this article
Fiorini, S., Krithika, R., Narayanaswamy, N.S. et al. Approximability of Clique Transversal in Perfect Graphs. Algorithmica 80, 2221–2239 (2018). https://doi.org/10.1007/s00453-017-0315-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-017-0315-3