Skip to main content
Log in

Optimal Approximation Algorithms for Maximum Distance-Bounded Subgraph Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we study the (in)approximability of two distance-based relaxed variants of the maximum clique problem (Max Clique), named Max d-Clique and Max d-Club: A d-clique in a graph \(G = (V, E)\) is a subset \(S\subseteq V\) of vertices such that for every pair of vertices \(u, v\in S\), the distance between u and v is at most d in G. A d-club in a graph \(G = (V, E)\) is a subset \(S'\subseteq V\) of vertices that induces a subgraph of G of diameter at most d. Given a graph G with n vertices, the goal of Max d-Clique (Max d-Club, resp.) is to find a d-clique (d-club, resp.) of maximum cardinality in G. Since Max 1-Clique and Max 1-Club are identical to Max Clique, the inapproximabilty for Max Clique shown by Zuckerman in 2007 is transferred to them. Namely, Max 1-Clique and Max 1-Club cannot be efficiently approximated within a factor of \(n^{1-\varepsilon }\) for any \(\varepsilon > 0\) unless \(\mathcal{P} = \mathcal{NP}\). Also, in 2002, Marin\(\breve{\mathrm{c}}\)ek and Mohar showed that it is \(\mathcal{NP}\)-hard to approximate Max d-Club to within a factor of \(n^{1/3-\varepsilon }\) for any \(\varepsilon >0\) and any fixed \(d\ge 2\). In this paper, we strengthen the hardness result; we prove that, for any \(\varepsilon > 0\) and any fixed \(d\ge 2\), it is \(\mathcal{NP}\)-hard to approximate Max d-Club to within a factor of \(n^{1/2-\varepsilon }\). Then, we design a polynomial-time algorithm which achieves an optimal approximation ratio of \(O(n^{1/2})\) for any integer \(d\ge 2\). By using the similar ideas, we show the \(O(n^{1/2})\)-approximation algorithm for Max d-Clique for any \(d\ge 2\). This is the best possible in polynomial time unless \(\mathcal{P} = \mathcal{NP}\), as we can prove the \(\varOmega (n^{1/2-\varepsilon })\)-inapproximability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Proceedings of LATIN 2002, LNCS 2286, pp. 598–612 (2002)

  2. Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H.: Optimal approximation algorithms for maximum distance-bounded subgraph problems. In: Proceedings of COCOA 2015, LNCS 9486, pp. 586–600 (2015)

  4. Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded subgraphs. In: Proceedings of LATIN 2010, LNCS 6034, pp. 615–626 (2010)

  5. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability—towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourjolly, J.-M., Laporte, G., Pesant, G.: An exact algorithm for the maximum \(k\)-club problem in an undirected graph. Eur. J. Oper. Res. 138, 21–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, M.-S., Hung, L.-J., Lin, C.-R., Su, P.-C.: Finding large \(k\)-clubs in undirected graphs. Computing 95, 739–758 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdös, P., Pach, J., Pollack, R., Tuza, Z.: Radius, diameter, and minimum degree. J. Comb. Theory 47, 73–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math. 18, 219–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Inf. Comput. 134, 103–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Syst. Sci. 54, 243–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golovach, P.A., Heggernes, P., Kratsch, D., Rafiey, A.: Finding clubs in graph classes. Discrete Appl. Math. 174, 57–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and computational experiments for finding \(2\)-clubs. J. Graph Algorithm Appl. 19(1), 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartung, S., Komusiewicz, C., Nichterlein, A., Suchý, O.: On structural parameterizations for the \(2\)-club problem. Discrete Appl. Math. 185, 79–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  18. Kahruman-Anderoglu, S., Buchanan, A., Butenko, S.: On provably best construction heuristics for hard combinatorial optimization problems. Networks 67(3), 238–245 (2016)

    Article  Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

  20. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14, 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  21. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)

    Article  MathSciNet  Google Scholar 

  22. Marinc̆ek, J., Mohar, B.: On approximating the maximum diameter ratio of graphs. Discrete Math. 244, 323–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979)

    Article  Google Scholar 

  24. Mardavi Pajouh, F., Balasundaram, B.: On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Discrete Optim. 9, 84–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pasupuleti, S.: Detection of protein complexes in protein interaction networks using \(n\)-clubs. In: Proceedings of EvoBIO 2008, pp. 153–164 (2008)

  26. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  30. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2003)

    Book  Google Scholar 

  31. Veremyev, A., Boginski, V.: Identifying large robust network clusters via new compact formulations of maximum \(k\)-club problems. Eur. J. Oper. Res. 218, 316–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: Proceedings of STOC 2012, pp. 887–898 (2012)

  33. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3, 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP25330018, JP26330017, JP17K00016, and JP17K00024. The authors would like to thank the anonymous reviewers for their suggestions and detailed comments that helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Asahiro.

Additional information

This paper combines results from two extended abstracts that appeared in Proceedings of LATIN 2010, LNCS 6034, pp. 615–625, 2010 [4] and COCOA 2015, LNCS 9486, pp. 586–600, 2015 [3].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asahiro, Y., Doi, Y., Miyano, E. et al. Optimal Approximation Algorithms for Maximum Distance-Bounded Subgraph Problems. Algorithmica 80, 1834–1856 (2018). https://doi.org/10.1007/s00453-017-0344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0344-y

Keywords

Navigation