Abstract
In the Cycle Packing problem, we are given an undirected graph G, a positive integer r, and the task is to check whether there exist r vertex-disjoint cycles. In this paper, we study Cycle Packing with respect to a structural parameter, namely, distance to proper interval graphs (indifference graphs). In particular, we show that Cycle Packing is fixed-parameter tractable (FPT) when parameterized by t, the size of a proper interval deletion set. For this purpose, we design an algorithm with \(\mathcal {O}(2^{\mathcal {O}(t \log t)} n^{\mathcal {O}(1)})\) running time. Bodlaender et al. (Theor Comput Sci 511:117–136, 2013) studied several structural parameterizations for Cycle Packing and our FPT algorithm fills a gap in their ecology of parameterizations. We combine color coding, greedy strategy and dynamic programming based on structural properties of proper interval graphs in a non-trivial fashion to obtain the FPT algorithm. Our belief is that this approach is quite general and can be useful in solving many other problems with the same parameterization.






Similar content being viewed by others
Notes
The algorithm described in [26] does not seem to be correct as it does not produce the correct answer for a family of input instances.
References
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
Bodlaender, H.L., Jansen, B.M.P.: Vertex cover kernelization revisited: upper and lower bounds for a refined parameter. Theory Comput. Syst. 63(2), 263–299 (2013)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle problems. Theor. Comput. Sci. 511, 117–136 (2013)
Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)
Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)
Cao, Y.: Unit interval editing is fixed-parameter tractable. Inf. Comput. 253, 109–126 (2017)
Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), 21:1–21:35 (2015)
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159 (2011)
Diestel, R.: Graph Theory. Springer, Berlin (2006)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)
Erdös, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math. 17, 347–352 (1965)
Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)
Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math. 27(4), 1964–1976 (2013)
Golumbic, M.C.: Algorithmic Graph Theory for Perfect Graphs. Springer, Berlin (2004)
Guruswami, V., Pandu Rangan, C., Chang, M.S., Chang, G.J., Wong, C.K.: The \(K_r\)-packing problem. Computing 66(1), 79–89 (2001)
Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)
Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below tight bounds: a Survey. In: The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, pp. 257–286 (2012)
Jansen, B.M.P.: The power of data reduction: kernels for fundamental graph problems. Ph.D. thesis, Utrecht University, The Netherlands (2013)
Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)
Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)
Ke, Y., Cao, Y., Ouyang, X., Wang, J.: Unit interval vertex deletion: fewer vertices are relevant. arXiv:1607.01162 (2016)
Kloks, T.: Packing interval graphs with vertex-disjoint triangles. CoRR, abs/1202.1041 (2012)
Lokshtanov, D., Mouawad, A., Saurabh, S., Zehavi, M.: Packing cycles faster than Erdös-Pósa. To appear in ICALP (2017)
Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)
Lokshtanov, D., Panolan, F., Sridharan, R., Saurabh, S.: Lossy kernelization. To appear in STOC (2017)
Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Comput. Math. Appl. 25(7), 15–25 (1993)
Manić, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)
McKee, T., McMorris, F.: Topics in Intersection Graph Theory. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1999)
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 182–191 (1995)
van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indifference: unit interval vertex deletion. In: Proceedings of the 36th International Conference on Graph-Theoretic Concepts in Computer Science, WG’10, pp. 232–243. Springer (2010)
van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4), 845–867 (2013)
Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)
Roberts, F.S.: Indifference and seriation. Ann. N. Y. Acad. Sci. 328(1), 173–182 (1979)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A preliminary version of this work appears in the proceedings of the 13th Latin American Theoretical INformatics Symposium (LATIN 2018).
Rights and permissions
About this article
Cite this article
Krithika, R., Sahu, A., Saurabh, S. et al. The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue. Algorithmica 81, 3803–3841 (2019). https://doi.org/10.1007/s00453-019-00599-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-019-00599-0