Abstract
In this paper, we study the NP-complete colorful variant of the classic matching problem, namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer k, the goal is to decide whether there exists a matching of size at least k such that the edges in the matching have distinct colors. Previously, in [MFCS’17], we studied this problem from the view point of Parameterized Complexity and gave efficient FPT algorithms as well as a quadratic kernel on paths. In this paper we design a quadratic vertex kernel for Rainbow Matching on general graphs; generalizing the earlier quadratic kernel on paths to general graphs. For our kernelization algorithm we combine a graph decomposition method with an application of expansion lemma.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
(I, k) is a Yes-instance if and only if \((I',k')\) is a Yes–instance.
References
Aharoni, R., Berger, E.: Rainbow matchings in \( r \)-partite \( r \)-graphs. Electron. J. Combin. 16(1), 119 (2009)
Alon, N.: Multicolored matchings in hypergraphs. Mosc. J. Combin. Number Theory 1, 3–10 (2011)
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)
Diemunsch, J., Ferrara, M., Moffatt, C., Pfender, F., Wenger, P.S.: Rainbow matchings of size\(\backslash \)delta (g) in properly edge-colored graphs. arXiv preprint arXiv:1108.2521 (2011)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2018)
Fujita, S., Kaneko, A., Schiermeyer, I., Suzuki, K.: A rainbow \( k \)-matching in the complete graph with \( r \) colors. Electron. J. Combin. 16(1), 51 (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)
Glebov, R., Sudakov, B., Szabó, T.: How many colors guarantee a rainbow matching? arXiv preprint arXiv:1211.0793 (2012)
Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: Parameterized algorithms and kernels for rainbow matching. Algorithmica 81, 1684–1698 (2019). https://doi.org/10.1007/s00453-018-0497-3
Itai, A., Rodeh, M., Tanimoto, S.L.: Some matching problems for bipartite graphs. J. ACM 25(4), 517–525 (1978)
Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs-a survey. Graphs Combin. 24(4), 237–263 (2008)
Kostochka, A., Yancey, M.: Large rainbow matchings in edge-coloured graphs. Combin. Probab. Comput. 21(1–2), 255–263 (2012)
Le, V.B., Pfender, F.: Complexity results for rainbow matchings. Theor. Comput. Sci. 524, 27–33 (2014)
LeSaulnier, T.D., Stocker, C., Wenger, P.S., West, D.B.: Rainbow matching in edge-colored graphs. Electron. J. Combin. 17(1), 26 (2010)
Lo, A.: Existences of rainbow matchings and rainbow matching covers. Discrete Math. 338(11), 2119–2124 (2015)
Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society, Providence (2009)
Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|} |E|)\) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, NY, USA, 13–15 Oct 1980, pp. 17–27 (1980)
Pokrovskiy, A.: An approximate version of a conjecture of Aharoni and Berger. Adv. Math. 333, 1197–1241 (2018)
Ryser, H.J.: Neuere probleme der kombinatorik. Vorträge über Kombinatorik, Oberwolfach, pp. 69–91 (1967)
Stockmeyer, L.J., Vazirani, V.V.: Np-completeness of some generalizations of the maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)
Wang, G.: Rainbow matchings in properly edge colored graphs. Electron. J. Combin. 18(1), 162 (2011)
Wang, G., Li, H.: Heterochromatic matchings in edge-colored graphs. Electron. J. Combin. 15(1), 138 (2008)
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gupta, S., Roy, S., Saurabh, S. et al. Quadratic Vertex Kernel for Rainbow Matching. Algorithmica 82, 881–897 (2020). https://doi.org/10.1007/s00453-019-00618-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-019-00618-0
Keywords
Profiles
- Sanjukta Roy View author profile