Skip to main content

Advertisement

Log in

Energy-Optimal Routes for Battery Electric Vehicles

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles, which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Formally, energy consumption does not define a metric on the input graph due to negative costs and the lack of symmetry. Nevertheless, we stick to the term as it is commonly used in the literature.

  2. http://www.ptvgroup.com.

  3. http://srtm.csi.cgiar.org.

  4. http://www.chargemap.com.

  5. http://www.openstreetmap.org.

References

  1. Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010)

  2. Atallah, M.J.: Some dynamic computational geometry problems. Comput. Math. Appl. 11(12), 1171–1181 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks, Lecture Notes in Computer Science, vol. 9220, pp. 19–80. Springer (2016)

  4. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18, 1.4:1–1.4:43 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012)

  6. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. ACM J. Exp. Algorithmics 15, 2.3:1–2.3:31 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018)

  8. Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015)

  9. Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)

  10. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013)

  11. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route planning in road networks with user preferences. In: Proceedings of the 15th International Symposium on Experimental Algorithms (SEA’16), Lecture Notes in Computer Science, vol. 9685, pp. 33–49. Springer (2016)

  12. Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)

  13. Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)

  14. Bellman, R.: On a routing problem. Q Appl. Math. 16(1), 87–90 (1958)

    Article  MATH  Google Scholar 

  15. Cherkassky, B.V., Georgiadis, L., Goldberg, A.V., Tarjan, R.E., Werneck, R.F.: Shortest-path feasibility algorithms: an experimental evaluation. ACM J. Exp. Algorithmics 14, 2.7:1–2.7:37 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  17. Davenport, H., Schinzel, A.: A combinatorial problem connected with differential equations. Am. J. Math. 87(3), 684–694 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004)

  19. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transp. Sci. 51(2), 566–591 (2017)

    Article  Google Scholar 

  21. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011)

  22. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009)

  23. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007)

  24. Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009)

  25. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM J. Exp. Algorithmics 21, 1.5:1–1.5:49 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)

    Article  MATH  Google Scholar 

  28. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013)

  29. Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011)

  30. Fiori, C., Ahn, K., Rakha, H.A.: Power-based electric vehicle energy consumption model: model development and validation. Appl. Energy 168, 257–268 (2016)

    Article  Google Scholar 

  31. Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956)

  32. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  34. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005)

  35. Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and efficient electric vehicle routes. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’14), pp. 193–202. ACM (2014)

  36. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm Engineering & Experiments (ALENEX’04), pp. 100–111. SIAM (2004)

  37. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  38. Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009)

  39. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13, 2.5:1–2.5:26 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Huber, G., Bogenberger, K.: Long-trip optimization of charging strategies for battery electric vehicles. Transp. Res. Record: J. Transp. Res. Board 2497, 45–53 (2015)

    Article  Google Scholar 

  41. Johnson, D.B.: A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  42. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)

    Article  Google Scholar 

  44. Kluge, S., Sánta, C., Dangl, S., Wild, S.M., Brokate, M., Reif, K., Busch, F.: On the computation of the energy-optimal route dependent on the traffic load in Ingolstadt. Transp. Res. Part C: Emerg. Technol. 36, 97–115 (2013)

    Article  Google Scholar 

  45. Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011)

  46. Liao, C.S., Lu, S.H., Shen, Z.J.M.: The electric vehicle touring problem. Transp. Res. Part B: Methodol. 86, 163–180 (2016)

    Article  Google Scholar 

  47. Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014)

  48. Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’11), pp. 513–516. ACM (2011)

  49. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21(3), 295–319 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for electric vehicles. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1402–1407. AAAI Press (2011)

  52. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Proceedings of the 13th Annual European Conference on Algorithms (ESA’05), Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer (2005)

  53. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX’12), pp. 16–29. SIAM (2012)

  54. Schönfelder, R., Leucker, M.: Abstract routing models and abstractions in the context of vehicle routing. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp. 2639–2645. AAAI Press (2015)

  55. Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014)

  56. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case study from public railroad transport. ACM J. Exp. Algorithmics 5, 12:1–12:23 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002)

  58. Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012)

  60. Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013)

  61. Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012)

  62. Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid vehicles. Transp. Res. Part B: Methodol. 103, 111–135 (2017)

    Article  Google Scholar 

  63. Sun, Z., Zhou, X.: To save money or to save time: intelligent routing design for plug-in hybrid electric vehicle. Transp. Res. Part D: Transp. Environ. 43, 238–250 (2016)

    Article  Google Scholar 

  64. Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive Routing and Recharging Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois (2014)

  65. Sweeting, W.J., Hutchinson, A.R., Savage, S.D.: Factors affecting electric vehicle energy consumption. Int. J. Sustain. Eng. 4(3), 192–201 (2011)

    Article  Google Scholar 

  66. Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012)

  67. Wang, Y., Jiang, J., Mu, T.: Context-aware and energy-driven route optimization for fully electric vehicles via crowdsourcing. IEEE Trans. Intell. Transp. Syst. 14(3), 1331–1345 (2013)

    Article  Google Scholar 

  68. Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport–Schinzel sequences by segments. Discret. Comput. Geom. 3(1), 15–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Raphael Luz for providing the consumption data [38, 66], Renato Werneck for running PUNCH [21], Moritz Kobitzsch for interesting discussions, and Christian Schulz and Dennis Luxen for providing Buffoon [53] and OSRM [48], respectively, which we used in our preliminary experiments. We thank Sabine Storandt for making Jap-OSM available, and Konstantinos Demestichas for providing sample data on energy consumption of EVs.

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. WA 654/23-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Baum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preliminary versions of this manuscript have appeared in the proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems [10] and the 16th International Symposium on Experimental Algorithms [13]. It is based on the thesis of one of the authors [7]. Tobias Zündorf acknowledges support by DFG Research Grant WA 654/23-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, M., Dibbelt, J., Pajor, T. et al. Energy-Optimal Routes for Battery Electric Vehicles. Algorithmica 82, 1490–1546 (2020). https://doi.org/10.1007/s00453-019-00655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-019-00655-9

Keywords

Navigation