Abstract
A cut tree is a combinatorial structure that represents the edge-connectivity between all pairs of nodes of an undirected graph. Cut trees have multiple applications in dependability, as they represent how much it takes to disconnect every pair of network nodes. They have been used for solving connectivity problems, routing, and in the analysis of complex networks, among several other applications. This work presents a parallel version of the classical Gomory-Hu cut tree algorithm. The algorithm is heavily based on tasks that compute the minimum cut on contracted graphs. The main contribution is an efficient strategy to compute the contracted graphs, that allows processes to take advantage of previously contracted graph instances, instead of always computing all contractions from the original input graph. The proposed algorithm was implemented using MPI and experimental results are presented for several families of graphs and show significant performance gains.







Similar content being viewed by others
Notes
The Cluster is hosted at the Central Laboratory for High Performance Computing (LCPAD) of UFPR, and is sponsored by FINEP through the CT-INFRA/UFPR projects.
References
Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Algorithmic Aspects of Graph Connectivity. Cambridge University Press, Cambridge (2008)
Duarte Jr, E., Santini, R., Cohen, J.: Delivering packets during the routing convergence latency interval through highly connected detours. In: 2004 International Conference on Dependable Systems and Networks, pp. 495–504 (2004)
Engelberg, R., Könemann, J., Leonardi, S., Naor, J.: Cut problems in graphs with a budget constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006: theoretical informatics. Lecture notes in computer science, vol. 3887, pp. 435–446. Berlin Heidelberg, Springer (2006)
Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. SIAM J. Comput. 24(1), 101–108 (1995)
Mitrofanova, A., Farach-Colton, M., Mishra, B.: Efficient and robust prediction algorithms for protein complexes using Gomory–Hu trees. In: Pacific Symposium on Biocomputing, pp. 215–226 (2009)
Tuncbag, N., Salman, F.S., Keskin, O., Gursoy, A.: Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins Struct. Funct. Bioinform. 78(10), 2283–2294 (2010)
Kamath, K.Y., Caverlee, J.: Transient crowd discovery on the real-time social web. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, WSDM ’11, pp. 585–594. ACM (2011)
Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 181–190. ACM (2007)
Kim, C.-B., Foote, B.L., Pulat, P.: Cut-tree construction for facility layout. Comput. Ind. Eng. 28(4), 721–730 (1995)
Jermaine, C.: Computing program modularizations using the k-cut method. In: Sixth Working Conference on Reverse Engineering, 1999. Proceedings. pp. 224–234 (1999)
Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In: ICDM Workshops 2006. 6th IEEE International Conference on Data Mining Workshops, 2006, pp. 667–671 (2006)
Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4), 551–570 (1961)
Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM J. Comput. 19(1), 143–155 (1990)
Cohen, J., Rodrigues, L.A., Duarte Jr., E.P.: Parallel cut tree algorithms. J. Parallel Distrib. Comput. 109, 1–14 (2017)
Adamic, L.A., Glance, N.: The political blogosphere and the 2004 u.s. election: Divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
Storchi, G., Dell’Olmo, P., Gentili, M.: Road network of the city of rome. In: 9th DIMACS Implementation Challenge—Shortest Paths. Available at http://www.dis.uniroma1.it/challenge9/download.shtml (1999). Accessed 11 Dec 2019 (1999)
Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data. Accessed 11 Dec 2019
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001). (Cambridge Books Online)
Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
Nagamochi, H., Ono, T., Ibaraki, T.: Implementing an efficient minimum capacity cut algorithm. Math. Program. 67(1–3), 325–341 (1994)
Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental study of minimum cut algorithms. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’97, pp. 324–333. Society for Industrial and Applied Mathematics, Philadelphia (1997)
Goldberg, A.V., Tsioutsiouliklis, K.: Cut tree algorithms. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pp. 376–385. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Anari, N., Vazirani, V. V.: Planar graph perfect matching is in NC. In: Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS’2018, pp. 650–661 (2018)
Abboud, A., Krauthgamer, R., Trabelsi O.: New algorithms and lower bounds for all-pairs max-flow in undirected graphs In: Proceedings of the XXth ACM-Siam Symposium on Discrete Algorithms, SODA’2020 (2020)
Acknowledgements
This work was partially supported by the Brazilian Research Council CNPq, Grants 311451/2016-0 and 428941/2016-8.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maske, C., Cohen, J. & Duarte, E.P. Speeding Up the Gomory-Hu Parallel Cut Tree Algorithm with Efficient Graph Contractions. Algorithmica 82, 1601–1615 (2020). https://doi.org/10.1007/s00453-019-00658-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-019-00658-6