Skip to main content
Log in

Paired-Domination Problem on Distance-Hereditary Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an \(O(n^2)\)-time algorithm on distance-hereditary graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvarado, J.D., Dantas, S., Rautenbach, D.: Perfectly relating the domination, total domination, and paired domination numbers of a graph. Discrete Math. 338(8), 1424–1431 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory Ser. B 41(2), 182–208 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Beyer, T., Proskurowski, A., Hedetniemi, S., Mitchell, S.: Independent domination in trees. In: Proceedings of SEICCGTC’77, pp. 321–328. Utilitas Math., Winnipeg, Man. (1977)

  7. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput. 11(1), 191–199 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Brandstädt, A., Kratsch, D.: On the restriction of some NP-complete graph problems to permutation graphs. In: the Proceedings of FCT’85, Volume 199 of LNCS, pp. 53–62. Springer, Berlin (1985)

  9. Brandstädt, A., Mosca, R.: Weighted efficient domination for \(P_5\)-free and \(P_6\)-free graphs. SIAM J. Discrete Math. 30(4), 2288–2303 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Appl. Math. 22(1), 21–34 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Handbook of Combinatorial Optimization, Vol. 3, pp. 339–405. Kluwer Acad. Publ., Boston, MA (1998)

  12. Chang, M.-S.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Chang, M.-S., Hsieh, S.-Y., Chen, G.-H.: Dynamic programming on distance-hereditary graphs. In: the Proceedings of ISAAC’97, Volume 1350 of LNCS, pp. 344–353. Springer, Berlin (1997)

  14. Chang, M.-S., Wu, S.-C., Chang, G.J., Yeh, H.-G.: Domination in distance-hereditary graphs. Discrete Appl. Math. 116(1–2), 103–113 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Chao, H.S., Hsu, F.R., Lee, R.C.T.: An optimal algorithm for finding the minimum cardinality dominating set on permutation graphs. Discrete Appl. Math. 102(3), 159–173 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L., Lu, C., Zeng, Z.: Hardness results and approximation algorithms for (weighted) paired-domination graphs. Theor. Comput. Sci. 410(47–49), 5063–5071 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Chen, L., Lu, C., Zeng, Z.: A linear-time algorithm for paired-domination problem in strongly chordal graphs. Inf. Process. Lett. 110(1), 20–23 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired-domination problems in block and interval graphs. J. Comb. Optim. 19(4), 457–470 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Cheng, T.C.E., Kang, L., Shan, E.: A polynomial-time algorithm for the paired-domination problem on permutation graphs. Discrete Appl. Math. 157(2), 262–271 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Cockayne, E., Goodman, S., Hedetniemi, S.: A linear algorithm for the domination number of a tree. Inf. Process. Lett. 4(2), 41–44 (1975)

    MATH  Google Scholar 

  21. Colbourn, C.J., Stewart, L.K.: Permutation graphs: connected domination and Steiner trees. Discrete Math. 86(1–3), 179–189 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl. Math. 9, 27–39 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Corneil, D.G., Stewart, L.K.: Dominating sets in perfect graphs. Discrete Math. 86(1–3), 145–164 (1990)

    MathSciNet  MATH  Google Scholar 

  24. D’Atri, A., Moscarini, M.: Distance-hereditary graphs, Steiner trees, and connected domination. SIAM J. Comput. 17(3), 521–538 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Desormeaux, W.J., Henning, M.A.: Paired domination in graphs: a survey and recent results. Util. Math. 94, 101–166 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1(4), 134–138 (1982)

    MathSciNet  MATH  Google Scholar 

  27. Farber, M.: Domination, independent domination, and duality in strongly chordal graphs. Discrete Appl. Math. 7(2), 115–130 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Farber, M., Keil, J.M.: Domination in permutation graphs. J. Algorithms 6(3), 309–321 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  31. Giannopoulou, A.C., Mertzios, G.B.: New geometric representations and domination problems on tolerance and multitolerance graphs. SIAM J. Discrete Math. 30(3), 1685–1725 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Hammer, P.L., Maffray, F.: Completely separable graphs. Discrete Appl. Math. 27(1–2), 85–99 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  34. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  35. Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Networks 32(3), 199–206 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Hedetniemi, S.T., Laskar, R.C.: Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Math. 86(1–3), 257–277 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Hedetniemi, S.T., Laskar, R.C.: Topics on Domination. North-Holland Publishing, Amsterdam (1991)

    MATH  Google Scholar 

  38. Henning, M.A., Pradhan, D.: Algorithmic aspects of upper paired-domination in graphs. Theor. Comput. Sci. 804, 98–114 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing, New Orleans (1996)

    MATH  Google Scholar 

  40. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. Oxford Ser. (2) 28(112), 417–420 (1977)

    MathSciNet  MATH  Google Scholar 

  41. Hsieh, S.-Y., Ho, C.-W., Hsu, T.-S., Ko, M.-T., Chen, G.-H.: Characterization of efficiently parallel solvable problems on distance-hereditary graphs. SIAM J. Discrete Math. 15(4), 488–518 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Hsu, W.L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. Inf. Process. Lett. 40(3), 123–129 (1991)

    MathSciNet  MATH  Google Scholar 

  43. Kang, L.: Variations of dominating set problem. In: Pardalos, P., Du, D.Z., Graham, R. (eds.) Handbook of Combinatorial Optimization, 2nd edn, pp. 3363–3394. Springer, Berlin (2013)

    Google Scholar 

  44. Kao, M.-J., Chen, H.-L., Lee, D.T.: Capacitated domination: problem complexity and approximation algorithms. Algorithmica 72(1), 1–43 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Keil, J.M.: Total domination in interval graphs. Inf. Process. Lett. 22(4), 171–174 (1986)

    MathSciNet  MATH  Google Scholar 

  46. Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Appl. Math. 42(1), 51–63 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Lappas, E., Nikolopoulos, S.D., Palios, L.: An \(O(n)\)-time algorithm for the paired domination problem on permutation graphs. Eur. J. Combin. 34(3), 593–608 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Laskar, R., Pfaff, J.: Domination and irredundance in split graphs. Technical Report 430, Clemson University, Dept. Math. Sciences (1983)

  49. Laskar, R., Pfaff, J., Hedetniemi, S.M., Hedetniemi, S.T.: On the algorithmic complexity of total domination. SIAM J. Algebr. Discrete Methods 5(3), 420–425 (1984)

    MathSciNet  MATH  Google Scholar 

  50. Lin, C.-C., Tu, H.-L.: A linear-time algorithm for paired-domination on circular-arc graphs. Theor. Comput. Sci. 591, 99–105 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Lu, C., Wang, B., Wang, K., Wu, Y.: Paired-domination in claw-free graphs with minimum degree at least three. Discrete Appl. Math. 257, 250–259 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Pfaff, J., Laskar, R., Hedetniemi, S.T.: NP-completeness of total and connected domination and irredundance for bipartite graphs. Technical Report 428, Clemson University, Dept. Math. Sciences (1983)

  53. Qiao, H., Kang, L., Cardei, M., Du, D.-Z.: Paired-domination of trees. J. Global Optim. 25(1), 43–54 (2003)

    MathSciNet  MATH  Google Scholar 

  54. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly chordal graphs. Networks 15(1), 109–124 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Yeh, H.-G., Chang, G.J.: Weighted connected domination and Steiner trees in distance-hereditary graphs. Discrete Appl. Math. 87(1–3), 245–253 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Ministry of Science and Technology under the Grants Nos. MOST 106-2221-E-019-014, and MOST 107-2221-E-019-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chi Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Ku, KC. & Hsu, CH. Paired-Domination Problem on Distance-Hereditary Graphs. Algorithmica 82, 2809–2840 (2020). https://doi.org/10.1007/s00453-020-00705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00705-7

Keywords

Navigation