Skip to main content
Log in

Posimodular Function Optimization

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A function \(f: 2^V \rightarrow \mathbb {R}\) on a finite set V is posimodular if \(f(X)+f(Y) \ge f(X{\setminus } Y)+f(Y{\setminus } X)\), for all \(X,Y\subseteq V\). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. We consider the problem of finding a nonempty subset X minimizing f(X), when the posimodular function f is given by oracle access. We show that posimodular function minimization requires exponential time, contrasting with the polynomial solvability of submodular function minimization that forms another generalization of cut functions. On the other hand, the problem is fixed-parameter tractable in terms of the size D of the image (or range) of f. In more detail, we show that \(\varOmega (2^{0.32n} T_f)\) time is necessary and \(O(2^{0.92n}T_f)\) sufficient, where \(T_f\) denotes the time for one function evaluation and \(n = |V|\). When the image of f is \(D=\{0,1,\ldots ,d\}\) for integer d, \(O(2^{1.218d}nT_f)\) time is sufficient. We can also generate all sets minimizing f in time \(2^{O(d)} n^2 T_f\). Finally, we also consider the problem of maximizing a given posimodular function, showing that it requires at least \(2^{n-1}T_f\) time in general, while it has time complexity \(\varTheta ({n \atopwithdelims ()d-1}T_f)\) when \(D=\{0,1,\ldots , d\}\) is the image of f, for integer \(d=O(n^{1/4})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow demands in undirected networks. J. Algorithms 42, 54–68 (2002)

    Article  MathSciNet  Google Scholar 

  2. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816 (2011)

  3. Egres open problem list: http://lemon.cs.elte.hu/egres/open/Maximizing_a_skew-supermodular_function

  4. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  5. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5(1), 25–53 (1992)

    Article  MathSciNet  Google Scholar 

  6. Fujishige, S.: A laminarity property of the polyhedron described by a weakly posi-modular set function. Discrete Appl. Math. 100(1–2), 123–126 (2000)

    Article  MathSciNet  Google Scholar 

  7. Halldórsson, M.M., Ishii, T., Makino, K., Takazawa, K.: Posimodular function optimization. In: Proceedings of 15th International Symposium on Algorithms and Data Structures (WADS), pp. 437–448. Springer (2017)

  8. Ishii, T., Makino, K.: Posi-modular systems with modulotone requirements under permutation constraints. Discrete Math. Algorithms Appl. 2(1), 61–76 (2010)

    Article  MathSciNet  Google Scholar 

  9. Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source location problem with flow requirements in directed networks. Optim. Methods Softw. 18, 427–435 (2003)

    Article  MathSciNet  Google Scholar 

  10. Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)

    Article  MathSciNet  Google Scholar 

  11. Lee, Y.T., Sidford, A., Wong, S.C.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1049–1065. IEEE Computer Society (2015)

  12. Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222, 278–292 (2013)

    Article  MathSciNet  Google Scholar 

  13. Nagamochi, H.: Graph algorithms for network connectivity problems. J. Oper. Res. Soc. Japan 47(4), 199–223 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Nagamochi, H.: Minimum degree orderings. Algorithmica 56(1), 17–34 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Process. Lett. 67(5), 239–244 (1998)

    Article  MathSciNet  Google Scholar 

  16. Nagamochi, H., Ibaraki, T.: Polyhedral structure of submodular and posi-modular systems. Discrete Appl. Math. 107(1–3), 165–189 (2000)

    Article  MathSciNet  Google Scholar 

  17. Nagamochi, H., Shiraki, T., Ibaraki, T.: Augmenting a submodular and posi-modular set function by a multigraph. J. Combin. Optim. 5(2), 175–212 (2001)

    Article  MathSciNet  Google Scholar 

  18. Sakashita, M., Makino, K., Nagamochi, H., Fujishige, S.: Minimum transversals in posi-modular systems. SIAM J. Discrete Math. 23, 858–871 (2009)

    Article  MathSciNet  Google Scholar 

  19. Svitkina, Z., Tardos, É.: Min–max multiway cut. In: Approximation, Randomization, and Combinatorial Optimization, pp. 207–218 (2004)

  20. Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem on undirected flow networks. IEICE Trans. J81–A, 863–869 (1998). ((in Japanese))

    Google Scholar 

  21. van den Heuvel, J., Johnson, M.: The external network problem with edge- or arc-connectivity requirements. In: Combinatorial and Algorithmic Aspects of Networking, Lecture Notes in Computer Science, vol. 3405, pp. 114–126. Springer (2004)

  22. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35, 96–144 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are most grateful for suggestions from anonymous reviewers that allowed us to improve the time complexity of Algorithm 3 and simplify several arguments. We thank S. Fujishige, M. Grötschel, and S. Tanigawa for their helpful comments. This research was partially supported by the Scientific Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnús M. Halldórsson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this article was presented in Proceedings of the 15th International Symposium on Algorithms and Data Structures (WADS 2017) [7]

This research was partially supported by Icelandic Research Fund Grants 152679-05 and 174484-05, MEXT KAKENHI Grant Numbers JP24106002, JSPS KAKENHI Grant Numbers JP25280004, JP26280001, JP16K00001 and 20K11699, and JST CREST Grant Number JPMJCR1402, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halldórsson, M.M., Ishii, T., Makino, K. et al. Posimodular Function Optimization. Algorithmica 84, 1107–1131 (2022). https://doi.org/10.1007/s00453-021-00910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00910-y

Keywords

Mathematics Subject Classification

Navigation