Skip to main content
Log in

Algorithms for the Unit-Cost Stochastic Score Classification Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Consider the following Stochastic Score Classification problem. A doctor is assessing a patient’s risk of developing a disease and can perform n different binary tests on the patient. The probability that test i is positive is \(p_i\) and the outcomes of the n tests are independent. A patient’s score is the total number of positive tests. Possible scores thus range between 0 and n. This range is divided into subranges, corresponding to risk classes (e.g., LOW, MEDIUM, or HIGH risk). Each test has an associated cost. To reduce testing cost, instead of performing all tests and determining an exact score, the doctor can perform tests sequentially and stop testing when it is possible to determine the patient’s risk class. The problem is to determine the order in which the doctor should perform the tests, so as to minimize expected testing cost. We address the unit-cost case of the Stochastic Score Classification problem, and provide polynomial-time approximation algorithms for adaptive and non-adaptive versions of the problem. We also pose a number of open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acharya, J., Jafarpour, A., Orlitsky, A.: Expected query complexity of symmetric Boolean functions. In: IEEE 49th Annual Allerton Conference on Communication, Control, and Computing, pp. 26–29 (2011). https://doi.org/10.1109/Allerton.2011.6120145

  2. Ben-Dov, Y.: Optimal testing procedure for special structures of coherent systems. Management Science (1981). https://doi.org/10.1287/mnsc.27.12.1410

  3. Boros, E., Ünlüyurt, T.: Diagnosing double regular systems. Ann. Math. Artif. Intell. 26(1–4), 171–191 (1999). https://doi.org/10.1023/A:1018958928835

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, M.F., Shi, W., Fuchs, W.K.: Optimal diagnosis procedures for \(k\)-out-of-\(n\) structures. IEEE Trans. Comput. 39(4), 559–564 (1990). https://doi.org/10.1109/12.54850

    Article  Google Scholar 

  5. Das, H., Jafarpour, A., Orlitsky, A., Pan, S., Suresh, A.T.: On the query computation and verification of functions. In: IEEE International symposium on information theory (ISIT), pp. 2711–2715 (2012). https://doi.org/10.1109/ISIT.2012.6284010

  6. Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochastic submodular set cover with applications to boolean function evaluation and min-knapsack. ACM Trans. Algorith. (2016). https://doi.org/10.1145/2876506

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghuge, R., Gupta, A., Nagarajan, V.: Non-adaptive stochastic score classification and explainable halfspace evaluation. CoRR (2021). https://doi.org/10.48550/arXiv.2111.05687

  8. Gkenosis, D., Grammel, N., Hellerstein, L., Kletenik, D.: The stochastic score classification problem. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual european symposium on algorithms (ESA 2018), Leibniz international proceedings in informatics (LIPIcs), vol. 112, pp. 36:1–36:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.36. http://drops.dagstuhl.de/opus/volltexte/2018/9499

  9. Gkenosis, D., Grammel, N., Hellerstein, L., Kletenik, D.: The stochastic boolean function evaluation problem for symmetric boolean functions. Discret. Appl. Math. 309, 269–277 (2022). https://doi.org/10.1016/j.dam.2021.12.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Greiner, R., Hayward, R., Jankowska, M., Molloy, M.: Finding optimal satisficing strategies for and-or trees. Artif. Intell. 170(1), 19–58 (2006). https://doi.org/10.1016/j.artint.2005.09.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: International conference on integer programming and combinatorial optimization, pp. 205–216. Springer (2013). https://doi.org/10.1007/978-3-642-36694-9_18

  12. Jung, J., Concannon, C., Shroff, R., Goel, S., Goldstein, D.G.: Simple rules for complex decisions. arXiv preprint arXiv:1702.04690 (2017)

  13. Kowshik, H., Kumar, P.: Optimal computation of symmetric boolean functions in collocated networks. IEEE J. Select. Area. Commun. 31(4), 639–654 (2013). https://doi.org/10.1109/JSAC.2013.130403

    Article  Google Scholar 

  14. Salloum, S.: Optimal testing algorithms for symmetric coherent systems. Ph.D. thesis, University of Southern California (1979)

  15. Salloum, S., Breuer, M.: An optimum testing algorithm for some symmetric coherent systems. J. Math. Anal. Appl. 101(1), 170–194 (1984). https://doi.org/10.1016/0022-247X(84)90064-7

  16. Salloum, S., Breuer, M.A.: Fast optimal diagnosis procedures for k-out-of-n:g systems. IEEE Trans. Reliabil. 46(2), 283–290 (1997). https://doi.org/10.1109/24.589958

    Article  Google Scholar 

  17. Singla, S.: The price of information in combinatorial optimization. In: Proceedings of the twenty-ninth annual ACM-SIAM symposium on discrete algorithms, pp. 2523–2532. SIAM (2018). https://doi.org/10.1137/1.9781611975031.161

  18. Tran, T., Luo, W., Phung, D., Morris, J., Rickard, K., Venkatesh, S.: Preterm birth prediction: Deriving stable and interpretable rules from high dimensional data. In: Conference on machine learning in healthcare, LA, USA (2016)

  19. Ünlüyurt, T.: Sequential testing of complex systems: a review. Discret. Appl. Math. 142(1–3), 189–205 (2004). https://doi.org/10.1016/j.dam.2002.08.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Ustun, B., Rudin, C.: Supersparse linear integer models for optimized medical scoring systems. Mach. Learn. 102(3), 349–391 (2016). https://doi.org/10.1007/s10994-015-5528-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Ustun, B., Rudin, C.: Optimized risk scores. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1125–1134. ACM (2017). https://doi.org/10.1145/3097983.3098161

  22. Zeng, J., Ustun, B., Rudin, C.: Interpretable classification models for recidivism prediction. J. Royal Stat. Soci.: Seri. A (Stat. Soci.) 180(3), 689–722 (2017). https://doi.org/10.1111/rssa.12227

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for suggesting we present our results in terms of SSClass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hellerstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partial support for this work came from NSF Award IIS-1217968 (all authors), NSF Award IIS-1909335 (L. Hellerstein), and a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York (D. Kletenik).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grammel, N., Hellerstein, L., Kletenik, D. et al. Algorithms for the Unit-Cost Stochastic Score Classification Problem. Algorithmica 84, 3054–3074 (2022). https://doi.org/10.1007/s00453-022-00982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00982-4

Keywords

Navigation