Skip to main content
Log in

Algorithms for p-Faulty Search on a Half-Line

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study p-Faulty Search, a variant of the classic cow-path optimization problem, where a unit speed robot searches the half-line (or 1-ray) for a hidden item. The searcher is probabilistically faulty, and detection of the item with each visitation is an independent Bernoulli trial whose probability of success p is known. The objective is to minimize the worst case expected detection time, relative to the distance of the hidden item to the origin. A variation of the same problem was first proposed by Gal (Search games, Academic Press, New York, 1980). Alpern and Gal (The theory of search games and rendezvous, Springer, Berlin, 2003) proposed a so-called monotone solution for searching the line (2-rays); that is, a trajectory in which the newly searched space increases monotonically in each ray and in each iteration. Moreover, they conjectured that an optimal trajectory for the 2-rays problem must be monotone. We show that an analogous conjecture for the case where the search domain is the half-line cannot be correct. Indeed, we provide a lower bound for all monotone algorithms, which we also match with an upper bound. Our main contribution is the design and analysis of a sequence of refined search strategies, outside the family of monotone algorithms, which we call t-sub-monotone algorithms. Such algorithms induce performance that is strictly decreasing with t, and for all \(p \in (0,1)\). The value of t quantifies, in a certain sense, how much our algorithms deviate from being monotone, demonstrating that monotone algorithms are sub-optimal when searching the half-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Cyclic and monotone patterns are natural search strategies since they balance the frequency that each direction is explored with the rate that new space is explored.

  2. Alternatively, we could have defined monotone trajectories so as to return to location 1, instead of the origin, since we know that \(d\ge 1\). Our analysis next shows that such a modification would not improve the competitive ratio.

  3. The numerical computation is done in Mathematica over a refined discretization of interval (0, 1) so as to produce smooth results.

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, New York (1987)

    MATH  Google Scholar 

  2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V. (eds.): Search Theory: A Game Theoretic Perspective, pp. 223–230. Springer, New York (2013)

    Book  MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Angelopoulos, S.: Further connections between contract-scheduling and ray-searching problems. In: Q.Y. 0001, M.J. Wooldridge (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 1516–1522. AAAI Press (2015). http://ijcai.org/proceedings/2015

  6. Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph. Discrete Appl. Math. 260, 51–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

    Article  Google Scholar 

  10. Bose, P., De Carufel, J.L.: A general framework for searching on a line. Theor. Comput. Sci. 703, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bose, P., De Carufel, J.L., Durocher, S.: Searching on a line: a complete characterization of the optimal solution. Theor. Comput. Sci. 569, 24–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandt, S., Foerster, K.T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. In: SIROCCO, pp. 140–157 (2017)

  13. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: CIAC, pp. 104–115 (2017)

  14. Brandt, S., Uitto, J., Wattenhofer, R.: A tight lower bound for semi-synchronous collaborative grid exploration. In: DISC, pp. 13:1–13:17 (2018)

  15. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  16. Chuangpishit, H., Georgiou, K., Sharma, P.: A multi-objective optimization problem on evacuating 2 robots from the disk in the face-to-face model; trade-offs between worst-case and average-case analysis. Information 11(11), 506 (2020)

    Article  Google Scholar 

  17. Cohen, L., Emek, Y., Louidor, O., Uitto, J.: Exploring an infinite space with finite memory scouts. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 207–224. SIAM (2017)

  18. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: F. Kuhn (ed.) Distributed Computing—28th International Symposium, DISC 2014, Austin, TX, USA, October 12–15, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8784, pp. 122–136. Springer (2014)

  19. Czyzowicz, J., Georgiou, K., Killick, R., Kranakis, E., Krizanc, D., Lafond, M., Narayanan, L., Opatrny, J., Shende, S.: Time-energy tradeoffs for evacuation by two robots in the wireless model. Theor. Comput. Sci. 852, 61–72 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Czyzowicz, J., Georgiou, K., Killick, R., Kranakis, E., Krizanc, D., Lafond, M., Narayanan, L., Opatrny, J., Shende, S.M.: Energy consumption of group search on a line. In: C. Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (eds.) 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, LIPIcs, vol. 132, pp. 137:1–137:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). http://www.dagstuhl.de/dagpub/978-3-95977-109-2

  21. Czyzowicz, J., Georgiou, K., Killick, R., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Priority evacuation from a disk: the case of n= 1, 2, 3. Theor. Comput. Sci. 806, 595–616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Czyzowicz, J., Georgiou, K., Killick, R., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Priority evacuation from a disk: The case of \(n\ge 4\). Theor. Comput. Sci. 846, 91–102 (2020)

    Article  MATH  Google Scholar 

  23. Czyzowicz, J., Georgiou, K., Kranakis, E.: Chapter 14: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities; Current Research in Moving and Computing, pp. 335–370. Springer, Berlin (2019)

    Chapter  Google Scholar 

  24. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, M.: Linear search with terrain-dependent speeds. In: CIAC, pp. 430–441 (2017)

  25. Czyzowicz, J., Kranakis, E., Krizanc, K., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: ADHOCNOW, pp. 181–194. Springer (2015)

  26. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM symposium on Principles of Distributed Computing, pp. 77–86 (2012)

  28. Fraigniaud, P., Korman, A., Rodeh, Y.: Parallel Bayesian search with no coordination. J. ACM 66(3), 1–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gal, S.: Search Games. Academic Press, New York (1980)

    MATH  Google Scholar 

  30. Gal, S.: Search Games. Wiley Encyclopedia for Operations Research and Management Science (2011)

  31. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: wireless and face-to-face communication models. Discrete Math. Theor. Comput. Sci. 21(3) (2019). https://dmtcs.episciences.org/5528

  32. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal cycle search despite the presence of faulty robots. In: 15th International Symposium on Algorithms and Experiments for Wireless Sensor Networks (ALGOSENSORS’19), Lecture Notes in Computer Science, to appear. Springer (2019)

  33. Georgiou, K., Lucier, J.: Weighted group search on a line. In: International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pp. 124–139. Springer (2020)

  34. Jeż, A., Łopuszański, J.: On the two-dimensional cow search problem. Inf. Process. Lett. 109(11), 543–547 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kagan, E., Ben-Gal, I.: Search and Foraging: Individual Motion and Swarm Dynamics. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  36. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: ICALP 96, pp. 280–289. Springer (1996)

  38. Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: DISC, pp. 1–15 (2016)

  39. Pattanayak, D., Ramesh, H., Mandal, P., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: ICDCN, pp. 20:1–20:4 (2018)

  40. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376–385 (2005)

  41. Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation. Wiley, Hoboken (1993)

    Google Scholar 

  42. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Huda Chuangpishit, Sophia Park, Bhargav Parsi and Benjamin Reiniger for many fruitful discussions.

Funding

Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgiou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by NSERC.

An extended abstract of this paper appeared in the proceedings of the 14th Latin American Theoretical Informatics Symposium (LATIN’20), São Paulo, Brazil, May 25–29, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonato, A., Georgiou, K., MacRury, C. et al. Algorithms for p-Faulty Search on a Half-Line. Algorithmica 85, 2485–2514 (2023). https://doi.org/10.1007/s00453-022-01075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01075-y

Keywords

Navigation