Skip to main content
Log in

Refined Bounds on the Number of Eulerian Tours in Undirected Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given an undirected multigraph \(G=(V,E)\) with no self-loops, and one of its nodes \(s\in V\), we consider the #P-complete problem of counting the number \(ET^{(e)}_s(G)\) of its Eulerian tours starting and ending at node s. We provide lower and upper bounds on the size of \(ET^{(e)}_s(G)\). Namely, let d(v) denote the degree of a node \(v\in V\); we show that \( \max \{L_1^{(e)}, L_2^{(e)}\} \le |ET^{(e)}_{s}(G)| \le d(s)\, \prod _{v \in V} (d(v) - 1)!! \) where \(L_1^{(e)} = (d(s)-1)!!\prod _{v \in V {\setminus } s}{(d(v)-2)!!}\) and \(L_2^{(e)} = 2^{1-|V|+|E|}\). We also consider the notion of node-distinct Eulerian tours. Indeed, the classical Eulerian tours are edge-distinct sequences. Node-distinct Eulerian tours, denoted \(ET^{(n)}_s(G)\), should instead be different as node sequences. Let \(\Delta (u)\) be the number of distinct neighbors of a node u, \(D \subseteq E\) be the set of distinct edges in the multigraph G, and m(e) for an edge \(e\in E\) be its multiplicity (i.e. \(|E|=\sum _{e \in D} m(e)\)). We prove that \( \max \{L_1^{(n)}, L_2^{(n)}, L_3^{(n)}\} \le |ET^{(n)}_{s}(G)| \le d(s)\, \prod _{v \in V} (d(v) - 1)!! \cdot \textstyle \prod _{e\in D} m(e)!^{-1}, \) where \(L_1^{(n)} = L_1^{(e)}/(\prod _{e \in D}m(e)!)\), \(L_2^{(n)} = (\Delta (s)-1)!!\prod _{v \in V {\setminus } s}{(\Delta (v)-2)!!}\), and \(L_3^{(n)} = 2^{1-|V|+|D|}\). We also extend all of our results to graphs having self-loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It is easy to see by induction that \(k!!\ge 2^{(k-1)/2}\) for all \(k\ge 1\), and since G is Eulerian, \(d(v) \ge 2\) for all \(v\in V\).

  2. By a simple induction, we have \((k-1)!! \ge \exp (\frac{k-1}{2})\) for all \(k\ge 3\).

References

  1. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736)

  2. Fleischner, H.: (Some of) the many uses of Eulerian graphs in graph theory (plus some applications). Discret. Math. 230(1), 23–43 (2001)

    Article  MathSciNet  Google Scholar 

  3. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  Google Scholar 

  4. Sohn, J.-I., Nam, J.-W.: The present and future of de novo whole-genome assembly. Brief. Bioinform. 19(1), 23–40 (2018)

    Google Scholar 

  5. Bernardini, G., Chen, H., Fici, G., Loukides, G., Pissis, S.P.: Reverse-safe data structures for text indexing. In: Proceedings of the symposium on algorithm engineering and experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pp. 199–213 (2020)

  6. Bent, S.W., Manber, U.: On non-intersecting Eulerian circuits. Discret. Appl. Math. 18(1), 87–94 (1987)

    Article  Google Scholar 

  7. Hierholzer, C., Wiener, C.: Über die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu umfahren. Math. Ann. 6(1), 30–32 (1873)

    Article  MathSciNet  Google Scholar 

  8. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: In: Gessel, I., Rota, G.-C. (eds.) Circuits and Trees in Oriented Linear Graphs, pp. 149–163. Birkhäuser Boston, Boston, MA (1987)

  9. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: ALENEX/ANALCO, pp. 259–262 (2005). ACM SIAM

  10. Creed, P.J.: Counting and sampling problems on Eulerian graphs. PhD thesis, University of Edinburgh (2010)

  11. Ge, Q., Štefankovič, D.: The complexity of counting Eulerian tours in 4-regular graphs. Algorithmica 63(3), 588–601 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. Algorithmica 16(4/5), 402–414 (1996)

    Article  MathSciNet  Google Scholar 

  13. Schrijver, A.: Bounds on the number of Eulerian orientations. Combinatorica 3(3), 375–380 (1983)

    Article  MathSciNet  Google Scholar 

  14. Las Vergnas, M.: Le polynôme de Martin d’un graphe eulerien. In: Berge, C., Bresson, D., Camion, P., Maurras, J.F., Sterboul, F. (eds.) Combinatorial Mathematics. North-Holland Mathematics Studies, vol. 75, pp. 397–411. North-Holland, (1983)

  15. Las Vergnas, M.: An upper bound for the number of Eulerian orientations of a regular graph. Combinatorica 10(1), 61–65 (1990)

    Article  MathSciNet  Google Scholar 

  16. Conte, A., Grossi, R., Loukides, G., Pisanti, N., Pissis, S.P., Punzi, G.: Beyond the BEST theorem: Fast assessment of Eulerian trails. In: International symposium on fundamentals of computation theory, pp. 162–175 (2021). Springer

  17. Punzi, G.: Bounding the number of Eulerian tours in undirected graphs. In: Computing and combinatorics: 28th international conference, COCOON 2022, Shenzhen, China, October 22–24, 2022, Proceedings, pp. 368–380 (2023). Springer

Download references

Acknowledgements

Work by GP supported by the Japan Society for the Promotion of Science, KAKENHI Grant Number 20H05962. Work by AC and RG partially supported by the Italian Ministry of University and Research, under Grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked Data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Giulia Punzi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of the work in this paper appeared in the 2022 COCOON conference. A comparison with the contributions of this paper is provided in Sect. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punzi, G., Conte, A., Grossi, R. et al. Refined Bounds on the Number of Eulerian Tours in Undirected Graphs. Algorithmica 86, 194–217 (2024). https://doi.org/10.1007/s00453-023-01162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01162-8

Keywords

Navigation