Skip to main content
Log in

On Structural Parameterizations of the Harmless Set Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper, we study the Harmless Set problem from a parameterized complexity perspective. Given a graph \(G = (V,E)\), a threshold function\(~t~:~ V \rightarrow {\mathbb {N}}\) and an integer k, we study Harmless Set, where the goal is to find a subset of vertices \(S \subseteq V\) of size at least k such that every vertex \(v\in V\) has fewer than t(v) neighbours in S. On the positive side, we obtain fixed-parameter algorithms for the problem when parameterized by the neighbourhood diversity, the twin-cover number and the vertex integrity of the input graph. We complement two of these results from the negative side. On dense graphs, we show that the problem is W[1]-hard parameterized by cluster vertex deletion number—a natural generalization of the twin-cover number. We show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, and treedepth—a natural generalization of the vertex integrity. We thereby resolve one open question stated by Bazgan and Chopin (Discrete Optim 14(C):170–182, 2014) concerning the complexity of Harmless Set parameterized by the treewidth of the input graph. We also show that Harmless Set for a special case where each vertex has the threshold set to half of its degree (the so-called Majority Harmless Set problem) is W[1]-hard when parameterized by the treewidth of the input graph. Given a graph G and an irredundant c-expression of G, we prove that Harmless Set can be solved in XP-time when parameterized by clique-width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aazami, A., Stilp, K.: Approximation algorithms and hardness for domination with propagation. SIAM J. Discrete Math. 23(3), 1382–1399 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bagga, K., Beineke, L., Goddard, W., Lipman, M., Pippert, R.: A survey of integrity. Discrete Appl. Math. 37–38, 13–28 (1992)

    Article  MathSciNet  Google Scholar 

  3. Barefoot, C.A., Entringer, R., Swart, H.C.: Vulnerability in graphs—a comparative survey. J. Combin. Math. Combin. Comput. 1(38), 13–22 (1987)

    MathSciNet  Google Scholar 

  4. Bazgan, C., Chopin, M.: The complexity of finding harmless individuals in social networks. Discrete Optim. 14(C), 170–182 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. In: Du, D.-Z., Zhang, G. (eds.) Computing and Combinatorics, pp. 543–554. Springer, Berlin (2013)

    Chapter  Google Scholar 

  6. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011). (Parameterized Complexity of Discrete Optimization)

    Article  MathSciNet  Google Scholar 

  7. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theoret. Comput. Sci. 412(29), 3693–3700 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set selection problem. J. Combin. Optim. 25(4), 702–715 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

    Article  MathSciNet  Google Scholar 

  11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1), 77–114 (2000)

    Article  MathSciNet  Google Scholar 

  12. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of the 37th International Conference on Mathematical Foundations of Computer Science, MFCS’12, pp. 348–359. Springer, Berlin (2012)

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (2012)

    Google Scholar 

  15. Drange, P.G., Dregi, M., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016)

  16. Drange, P.G., Muzi, I., Reidl, F.: Harmless sets in sparse classes. In: Bazgan, C., Fernau, H. (eds.) Combinatorial Algorithms, pp. 299–312. Springer, Cham (2022)

    Chapter  Google Scholar 

  17. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)

    Article  MathSciNet  Google Scholar 

  18. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) Algorithms and Computation, pp. 294–305. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Gaikwad, A., Maity, S.: On the harmless set problem parameterized by treewidth. In: Mutzel, P., Rahman, M.S., Slamin (eds.) WALCOM: Algorithms and Computation, pp. 227–238. Springer, Cham (2022)

    Chapter  Google Scholar 

  20. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(2) (2015)

  21. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica (2020)

  22. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. In: Calamoneri, T., Corò, F. (eds.) Algorithms and Complexity, pp. 271–285. Springer, Cham (2021)

    Chapter  Google Scholar 

  23. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  26. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 137–146. Association for Computing Machinery, New York (2003)

  27. Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)

    Google Scholar 

  28. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  29. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  30. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1), 189–241 (1999)

    Article  MathSciNet  Google Scholar 

  31. Nesetril, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Springer, Cham (2014)

    Google Scholar 

  32. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

    Article  Google Scholar 

  33. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282(2), 231–257 (2002)

    Article  MathSciNet  Google Scholar 

  34. Reddy, T., Rangan, C.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)

    Article  MathSciNet  Google Scholar 

  35. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Combin. Theory Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  Google Scholar 

  36. Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR. arXiv:1107.1177 (2011)

  37. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Automata, Languages and Programming, pp. 634–645. Springer, Berlin (2008)

Download references

Acknowledgements

We thank the editor and anonymous reviewers for their constructive comments and suggestions, which helped us to improve the manuscript. The first author gratefully acknowledges support from the Ministry of Human Resource Development, Government of India, under Prime Minister’s Research Fellowship Scheme (No. MRF-192002-211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Maity.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

The authors declare that the manuscript complies to the Ethical Rules applicable for this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version has been published in the proceedings of the 16th International Conference and Workshops on Algorithms and Computation (WALCOM) 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A., Maity, S. On Structural Parameterizations of the Harmless Set Problem. Algorithmica 86, 1475–1511 (2024). https://doi.org/10.1007/s00453-023-01199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01199-9

Keywords