Skip to main content
Log in

Closed Rotation Sequences

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A finite sequence of rotations is closed if a sequential application of all the rotations from the sequence results in no net orientation change. A complete characterization of closed rotation sequences involving a given set of rotation axes is presented, and the set of such sequences is shown to be a smooth manifold under a nondegeneracy condition on the rotation axes. The characterization is used to derive several examples of closed rotation sequences, some of which are then shown to specialize to classical examples of such sequences provided by the Rodrigues–Hamilton theorem and the Donkin’s theorem. Discrete versions of the Goodman–Robinson and Ishlinskii theorems are also derived and illustrated using the so-called Codman’s paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Both the coplanarity conditions imply that the angles between \((i-2)\)th and \((i-1)\)th faces of \(\fancyscript{M}_\mathrm{P}\) is the same as that between the corresponding faces of \(\fancyscript{F}_\mathrm{P}\). In other words, while the cones \(\fancyscript{M}\) and \(\fancyscript{F}\) have the same corresponding sides, the polar cones have the same corresponding angles.

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading, MA (1978)

    MATH  Google Scholar 

  2. Beatty, M.F.: Kinematics of finite, rigid-body displacements. Am. J. Phys. 34, 949–954 (1966)

    Article  MATH  Google Scholar 

  3. Brummelen, G.V.: Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press, Princeton (2013)

    Google Scholar 

  4. Casey, J.: A Treatise on Spherical Trigonometry. Hodges, Figgis and Co., Dublin (1889)

    MATH  Google Scholar 

  5. Codman, E.A.: The Shoulder: Rupture of the Supraspinatus Tendon and Other Lesions in or About the Subacromial Bursa, 2nd edn. T. Todd Co., Boston (1934)

    Google Scholar 

  6. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry. A. K. Peters, Natick, MA (2003)

    Google Scholar 

  7. Coxeter, H.S.M.: Non-Euclidean Geometry. The University of Toronto Press, Toronto (1957)

    MATH  Google Scholar 

  8. Crasta, N.: Observability of nonlinear input-affine systems with application to attitude dynamics. Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, India (2009)

  9. Donkin, W.F.: On the geometrical laws of the motion of a rigid system about a fixed point. Philos. Mag. (3rd Series) 36(245), 427–433 (1850)

    Google Scholar 

  10. Donkin, W.F.: On the geometrical theory of rotation. Philos. Mag. (4th Series) 1(III), 187–192 (1851)

    Google Scholar 

  11. Doughty Jr, S.P., Infante, E.F.: Matrix proof of the theorem of Rodrigues and Hamilton. Am. J. Phys. 32(9), 712–713 (1964)

    Article  Google Scholar 

  12. Goldstein, H., Poole Jr, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Pearson Education, Inc., Upper Saddle River (2002)

    Google Scholar 

  13. Goodman, L.E., Robinson, R.E.: Effect of finite rotations on gyroscopic sensing devices. J. Appl. Mech. 28, 210–213 (1958)

    Google Scholar 

  14. Hamilton, W.R.: On quaternions. Proc. R. Ir. Acad. 3, 1–16 (1847)

    Google Scholar 

  15. Hamilton, W.R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853)

    Google Scholar 

  16. Ishlinskii, A.Y.: Mechanics of Gyroscopic Systems. Israel Program for Scientific Translations, Jerusalem (1965)

    Google Scholar 

  17. Junkins, J.L., Shuster, M.D.: The geometry of the Euler angles. J. Astronaut. Sci. 41(4), 531–543 (1993)

    MathSciNet  Google Scholar 

  18. Kapovich, M., Millson, J.J.: On the moduli space of a spherical polygonal linkage. Can. Math. Bull. 42(3), 307–320 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kimov, D.M., Zhuravlev, V.P.: Group Theoretic Methods in Mechanics and Applied Mathematics. Taylor and Francis, London (2002)

    Google Scholar 

  20. Klein, F., Sommerfeld, A.: The Theory of the Top, vol. I. Introduction to the Kinematics and Kinetics of the Top (trans: Sandri, G., Nagem, R.J.). Birkhauser, Basel (2008)

  21. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton (2005)

    Google Scholar 

  22. Lamb, H.: The kinematics of the eye. Philos. Mag. (6th Series) 38(228), 685–697 (1919)

    Article  MATH  Google Scholar 

  23. Lamb, H.: Higher Mechanics. Cambridge University Press, London (1920)

    Google Scholar 

  24. Levi, M.: Geometric phases in the motion of rigid bodies. Arch. Ration. Mech. Anal. 122, 213–229 (1993)

    Article  MATH  Google Scholar 

  25. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

    Book  Google Scholar 

  26. Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  27. O’Reilly, O.M.: On the computation of relative rotations and geometric phases in the motions of rigid bodies. J. Appl. Mech. 64, 969–974 (1997)

    Article  MATH  Google Scholar 

  28. Pearl, M.L., Sidles, J.A., Lippitt, S.B., Harryman, D.T., Matsen, F.A.: Codman’s paradox: sixty years later. J. Shoulder Elb. Surg. 1(4), 219–225 (1992)

    Article  Google Scholar 

  29. Poinsot, L.: Outlines of a New Theory of Rotatory Motion (trans: Whitley, C.). R. Newby, Cambridge (1834)

  30. Politti, J.C., Goroso, G., Valentinuzzi, M.E., Bravo, O.: Codman’s paradox of the arm rotations is not a paradox: mathematical validation. Med. Eng. Phys. 20, 257–260 (1998)

    Article  Google Scholar 

  31. Room, T.G.: The composition of rotations in Euclidean three-space. Am. Math. Mon. 59(10), 688–692 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  32. Routh, E.J.: The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies. Macmillan and Company Limited, London (1897)

    Google Scholar 

  33. Sylvester, J.J.: On the rotation of a rigid body about a fixed point. Philos. Mag. (3rd Series) 37(252), 440–444 (1850)

    Google Scholar 

  34. Thomson, W., Tait, P.G.: Treatise on Natural Philosophy, Part I. University Press, Cambridge (1867)

    Google Scholar 

  35. Thurnauer, P.G.: Kinematics of finite, rigid-body displacements. Am. J. Phys. 35, 1145–1154 (1967)

    Article  Google Scholar 

  36. Todhunter, I.: Spherical Trigonometry, 2nd edn. Macmillan and Co, London (1863)

    Google Scholar 

  37. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press, London (1917)

    Google Scholar 

  38. Yeh, P., Gu, C.: Optics of Liquid Crystal Displays, 2nd edn. Wiley, Hoboken (2010)

    Google Scholar 

  39. Zhuravlev, V.F.: The solid angle theorem in rigid body dynamics. J. Appl. Math. Mech. 60(2), 319–322 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second author is thankful to Professor Christoph Ament and Dr. Thomas Glotzbach, Technische Universität Ilmenau, for providing financial support through the project MORPH (EU FP7 under Grant agreement No. 288704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Bhat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8322 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.P., Crasta, N. Closed Rotation Sequences. Discrete Comput Geom 53, 366–396 (2015). https://doi.org/10.1007/s00454-014-9653-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-014-9653-y

Keywords

Mathematics Subject Classification

Navigation