Abstract
We describe a computer algorithm that searches for substitution rules on a set of triangles, the angles of which are all integer multiples of \(\pi /n\). We find new substitution rules admitting \(7\)-fold rotational symmetry at many different inflation factors.












Similar content being viewed by others
References
Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and their associated \(C^*\)-algebras. Ergod. Theory Dyn. Syst. 18(3), 509–537 (1998)
Baake, M., Moll, M.: Random noble means substitutions. In: Schmid, S., Withers, R.L., Lifshitz, R. (eds.) Aperiodic Crystals, pp. 19–27. Springer, Dordrecht (2013)
Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 41(3), 221–239 (1977/1978)
Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Theory Dyn. Syst. 20, 1061–1078 (2000).
Ferenczi, S.: Rank and symbolic complexity. Ergod. Theory Dyn. Syst. 16, 663–682 (1996)
Frank, N., Sadun, L.: Fusion: a general framework for hierarchical tilings of \(\mathbb{R }^d\). Geom. Dedicata 171, 149–186 (2013)
Frank, N.P.: Multidimensional constant-length substitution sequences. Topol. Appl. 152(1–2), 44–69 (2005)
Frettlöh, D.: Inflationäre Pflasterungen der Ebene mit \({D}_{2m+1}\)-Symmetrie und minimaler Musterfamilie. Diploma Thesis, Universität Dortmund (1998). http://www.math.uni-bielefeld.de/-frettloe/papers/diplom
Frettlöh, D., Harriss, E.O.: The tilings encyclopedia. http://tilings.math.uni-bielefeld.de/. Accessed 01 Apr 2014
Gähler, F., Maloney, G.R.: Cohomology of one-dimensional mixed substitution tiling spaces. Topol. Appl. 160(5), 703–719 (2013)
García Escudero, J.: Randomness and topological invariants in pentagonal tiling spaces. Discrete Dyn. Natl. Soc., 1–23 (2011)
Godrèche, C., Luck, J.M.: Quasiperiodicity and randomness in tilings of the plane. J. Stat. Phys. 55(1–2), 1–28 (1989)
Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147(1), 181–223 (1998)
Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York (1986)
Harriss, E.O.: Non-periodic rhomb substitution tilings that admit order n rotational symmetry. Discrete Comput. Geom. 34(3), 523–536 (2005)
Kamae, T.: A topological invariant of substitution minimal sets. J. Math. Soc. Jpn. 24, 285–306 (1972)
Nilsson, J.: On the entropy of a family of random substitutions. Monatsh. Math. 168(3–4), 563–577 (2012)
Nilsson, J.: On the entropy of a two step random Fibonacci substitution. Entropy 15(9), 3312–3324 (2013)
Nischke, K.P., Danzer, L.: A construction of inflation rules based on n-fold symmetry. Discrete Comput. Geom. 15(2), 221–236 (1996)
Pacheco, R., Vilarinho, H.: Statistical stability for multi-substitution tiling spaces. Discrete Contin. Dyn. Syst. 33(10), 4579–4594 (2013)
Rivlin, T.J.: Pure and Applied Mathematics. Chebyshev Polynomials, 2nd edn. Wiley, New York (1990)
Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 17(3), 695–738 (1997)
Acknowledgments
The first and third authors were partly supported by the German Research Council (DFG), CRC 701. The third author was also partly supported by the Fields Institute during a research visit.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gähler, F., Kwan, E.E. & Maloney, G.R. A Computer Search for Planar Substitution Tilings with \(n\)-Fold Rotational Symmetry. Discrete Comput Geom 53, 445–465 (2015). https://doi.org/10.1007/s00454-014-9659-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-014-9659-5