Skip to main content

Advertisement

Log in

The Filling Problem in the Cube

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove an isoperimetric inequality for filling cellular \(\mathbb {Z}_2\)-cycles in a high-dimensional cube with cellular chains. In addition, we provide a family of cubical cellular cycles for which the exponent in the inequality is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2), 141–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, A.J.: Maximally connected arrays on the \(n\)-cube. SIAM J. Appl. Math. 15(6), 1485–1489 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boros, E., Füredi, Z.: The number of triangles covering the center of an \(n\)-set. Geom. Dedicata 17(1), 69–77 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burtin, Y.D.: On the probability of connectedness of a random subgraph of the \(n\)-cube. Probl. Peredachi Inf. 13, 90–95 (1977)

  5. Dotterrer, D., Kahle, M.: Coboundary expanders. J. Topol. Anal. 4(04), 499–514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, Paul, Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 17–61 (1960)

    Google Scholar 

  7. Erdős, P., Spencer, J.: Evolution of the \(n\)-cube. Comput. Math. Appl. 5(1), 33–39 (1979)

    Article  MathSciNet  Google Scholar 

  8. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 72(3), 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Gromov, M.: Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. 20, 416–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guth, L.: Notes on Gromov’s systolic estimate. Geom. Dedicata 123(1), 113–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harper, L.H.: Optimal assignments of numbers to vertices. J. Soc. Ind. Appl. Math. 12(1), 131–135 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hart, S.: A note on the edges of the \(n\)-cube. Discrete Math. 14(2), 157–163 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karasev, R.: A simpler proof of the Boros–Füredi–Bárány–Pach–Gromov theorem. Discrete Comput. Geom. 47(3), 492–495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katona, G.: A theorem of finite sets. In: Classic Papers in Combinatorics, pp. 381–401. Birkhäuser, Boston (1987)

  16. Kruskal, J.B.: The number of \(s\)-dimensional faces in a complex: an analogy between the simplex and the cube. J. Comb. Theory 6(1), 86–89 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindström, B.: The optimal number of faces in cubical complexes. Ark. Mat. 8(3), 245–257 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matoušek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points. Discrete Comput. Geom. 52(1), 1–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Larry Guth for his suggestions and encouragement and Matt Kahle for providing the impetus to complete the project. Significant gratitude is due to the editor, who was remarkably patient when the author made a mess of the first round of revisions. The author would also like to thank the Institute for Advanced Study where the early stages of this work were completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Dotterrer.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotterrer, D. The Filling Problem in the Cube. Discrete Comput Geom 55, 249–262 (2016). https://doi.org/10.1007/s00454-015-9725-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9725-7

Keywords

Navigation