Abstract
In Sturmfels and Whiteley (J Symb Comput 11(5):439–453, 1991), it is proven that any multihomogenous bracket polynomial with integer coefficients can be interpreted by a ruler construction when introducing simple non-degeneracy conditions. This problem is called (generalized) Cayley factorization. This allows for geometrically interpreting many projective invariant properties. We reprove the above statement in rank 3 giving a better bound on the size of the non-degeneracy conditions. The constant factor in the bound is essentially reduced from 105 to 9. The algorithm described is concise enough to be implemented on a computer. With this algorithm, interpreting a common condition for six points to lie on a common conic is very close to Pascal’s construction (see Apel, in: The geometry of brackets and the area principle, Dissertation, TU München, 2014).


Similar content being viewed by others
Notes
For evaluating the formula given in the case \(m\ge 2\), use the second version of (1) within the equivalent formula
.
References
Apel, S.: Cayley factorization and the area principle. Papers presented at ADG 2012: The 9th International Workshop on Automated Deduction in Geometry, University of Edinburgh, 17–19 Sept 2012, pp. 33–41 (2012)
Apel, S.: The geometry of brackets and the area principle. Dissertation, Fakultät für Mathematik, Technische Universität München (2014). http://mediatum.ub.tum.de/node?id=1175107
Barnabei, M., Brini, A., Rota, G.-C.: On the exterior calculus of invariant theory. J. Algebra 96(1), 120–160 (1985)
Berge, C.: Two theorems in graph theory. Proc. Natl Acad. Sci. USA 43(9), 842–844 (1957)
Browne, J.: Grassmann Algebra: Foundations: Exploring Extended Vector Algebra with Mathematica. CreateSpace Independent Publishing Platform (2012)
Carrell, J.B., Dieudonné, J.A.: Invariant Theory, Old and New. Academic Press, New York (1971)
Chan, W., Rota, G.-C., Stein, J.A.: The power of positive thinking. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 1–36. Springer, Dordrecht (1995)
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry: Automated Production of Readable Proofs for Geometry Theorems, vol. 6. World Scientific, Singapore (1994)
Crapo, H.: Invariant-theoretic methods in scene analysis and structural mechanics. J. Symb. Comput. 11(5), 523–548 (1991)
Crapo, H.: Projective configurations: their invariants and homology. Proc. R. Ir. Acad. Sect. A 95A(Supplement), 35–58 (1995)
Crapo, H., Rota, G.-C.: On the Foundations of Combinatorial Theory: Combinatorial Geometries. MIT Press, Cambridge (1970)
Crapo, H., Rota, G.-C.: The resolving bracket. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 197–222. Springer, Dordrecht (1995)
Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures: a projective geometric introduction. Struct. Topol. 6, 43–82 (1982)
Crelle, A.L.: Ueber einige Eigenschaften des ebenen geradlinigen Dreiecks rücksichtlich dreier durch die Winkel-Spitzen gezogenen geraden Linien, Berlin (1816)
Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)
Doubilet, P., Rota, G.-C., Stein, J.: On the foundations of combinatorial theory IX. Combinatorial methods in invariant theory. Stud. Appl. Math. 53(3), 185–216 (1974)
Grosshans, F.D., Rota, G.-C., Stein, J.A.: Invariant Theory and Superalgebras. American Mathematical Society, Providence, RI (1987)
Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and the area principle. Math. Mag. 68(4), 254–268 (1995)
Grünbaum, B., Shephard, G.C.: Some new transversality properties. Geom. Dedicata 71(2), 179–208 (1998)
Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935)
Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge University Press, Cambridge (1994)
Huang, R.Q., Rota, G.-C., Stein, J.A.: Supersymmetric bracket algebra and invariant theory. In: Piacentini Cattaneo, G.M., Strickland, E. (eds.) Topics in Computational Algebra, pp. 193–246. Springer, Dordrecht (1990)
Kraft, H., Procesi, C.: Classical Invariant Theory, a Primer. Lecture Notes, 125 pp., http://jones.math.unibas.ch/~kraft/Papers/KP-Primer.pdf (1996)
Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
Li, H., Wu, Y.: Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry. J. Symb. Comput. 36(5), 717–762 (2003)
Li, H., Zhao, L., Chen, Y.: Polyhedral scene analysis combining parametric propagation with calotte analysis. In: Li, H., Olver, P.J., Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications, pp. 383–402. Springer, Berlin (2005)
Möbius, A.F.: Der barycentrische Calcul. Johann Ambrosius Barth, Berlin (1827)
Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, New York (2011)
Sturmfels, B.: Algorithms in Invariant Theory. Springer, New York (1993)
Sturmfels, B., Whiteley, W.: On the synthetic factorization of projectively invariant polynomials. J. Symb. Comput. 11(5), 439–453 (1991)
Tay, T.-S.: On the Cayley factorization of calotte conditions. Discrete Comput. Geom. 11(1), 97–109 (1994)
Weyl, H.: The Classical Groups: Their Invariants and Representations, vol. 1. Princeton University Press, Princeton (1997)
White, N.L.: The bracket ring of a combinatorial geometry. I. Trans. Am. Math. Soc. 202, 79–95 (1975)
White, N.L.: Cayley factorization and a straightening algorithm. In: Piacentini Cattaneo, G.M., Strickland, E. (eds.) Topics in Computational Algebra, pp. 163–184. Springer, Dordrecht (1990)
White, N.L.: Multilinear Cayley factorization. J. Symb. Comput. 11(5), 421–438 (1991)
White, N.L.: Grassmann–Cayley algebra and robotics. J. Intell. Robot. Syst. 11(1–2), 91–107 (1994)
White, N.L.: A tutorial on Grassmann–Cayley algebra. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 93–106. Springer, Dordrecht (1995)
White, N.L.: Grassmann–Cayley algebra and robotics applications. In: Bayro-Corrochano, E. (ed.) Handbook of Geometric Computing, pp. 629–656. Springer, Berlin (2005)
White, N.L., McMillan, T.: Cayley factorization. In: Gianni, P. (ed.) Symbolic and Algebraic Computation, pp. 521–533. Springer, Berlin (1989)
White, N.L., Whiteley, W.: The algebraic geometry of stresses in frameworks. SIAM J. Algebraic Discrete Methods 4(4), 481–511 (1983)
Whiteley, W.: Invariant computations for analytic projective geometry. J. Symb. Comput. 11(5), 549–578 (1991)
Whiteley, W.J.: Logic and invariant theory. Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of Technology (1971)
Wolfram Research, Inc.: Mathematica Edition: Version 9.0 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Rights and permissions
About this article
Cite this article
Apel, S. Cayley Factorization and the Area Principle. Discrete Comput Geom 55, 203–227 (2016). https://doi.org/10.1007/s00454-015-9738-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-015-9738-2
Keywords
- Cayley factorization
- Bracket polynomials
- Projectively invariant properties
- Ruler constructions
- Grassmann–Cayley algebra