Skip to main content
Log in

How to Guard Orthogonal Polygons: Diagonal Graphs and Vertex Covers

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We extend and unify most known results about guarding orthogonal polygons by introducing the same-sign diagonal graphs of a convex quadrangulation and applying results about vertex covers for graphs. Our approach also yields new theorems and often guarantees two disjoint vertex guard sets of relatively small cardinality. For instance, an orthogonal polygon on n vertices has two disjoint vertex guard sets of cardinality at most \(\lfloor n/4\rfloor \). We give new proofs of Aggarwal’s one-hole theorem and the orthogonal fortress theorem. We prove that an orthogonal polygon with n vertices and any number of holes can be protected by at most \(\lfloor (17n-8)/52\rfloor \) vertex guards, improving the best known bound of \(\lfloor n/3\rfloor \). Also, an orthogonal polygon with n vertices and h holes can be protected by \(\lfloor (n+2h)/3\rfloor \) guarded guards, which is best possible when \(n\ge 16h\). Moreover, for orthogonal fortresses with n vertices, \(\lfloor (n+6)/3\rfloor \) guarded guards are always sufficient and sometimes necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic aspects. Ph.D. Thesis, Johns Hopkins University, Baltimore (1984)

  2. Cuoto, M.C., de Souza, C.C., de Rezende, P.J.: An exact algorithm for minimizing vertex guards on art galleries. Int. Trans. Oper. Res. 18, 425–448 (2011)

    Article  MathSciNet  Google Scholar 

  3. Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory Ser. B 24, 374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fraughnaugh, K., Locke, S.C.: Finding independent sets in triangle-free graphs. SIAM J. Discrete Math. 9, 674–681 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158, 718–722 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hernández-Peñalver, G.: Controlling guards. In: Proceedings of 6th Canadian Conference on Computational Geometry (6CCCG), Waterloo, pp. 387–392 (1994)

  7. Hernández-Peñalver, G.: Vigilancia vigilada de polígonos ortogonales. In: Actes del VI Encuentros de Geometria Computacional, Barcelona, pp. 198–205 (1995)

  8. Hoffmann, F.: On the rectilinear art gallery problem. In: Proceedings of 17th International Colloquium Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 443, pp. 717–728. Springer, Berlin (1990)

  9. Hoffmann, F., Kriegel, K.: A graph-coloring result and its consequences for polygon-guarding problems. SIAM J. Discrete Math. 9, 210–224 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Katz, M., Roisman, G.: On guarding the vertices of rectilinear domains. Comput. Geom. 39, 219–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kreher, D.L., Radziszowski, S.P.: Minimum triangle-free graphs. Ars Comb. 31, 65–92 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Lubiw, A.: Decomposing polygons into convex quadrilaterals. In: Proceedings of the 1st ACM Symposium on Computational Geometry, pp. 97–106. ACM Press, New York (1985)

  14. Michael, T.S., Pinciu, V.: Art gallery theorems for guarded guards. Comput. Geom. 26, 247–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. J. Geom. 21, 118–130 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  17. Pinciu, V.: Connected guards in orthogonal art galleries. In: Computational Science and Its Applications—ICCSA 2003. Part III. Lecture Notes in Computer Science, vol. 2669, pp. 886–893. Springer, Berlin (2003)

  18. Schuchardt, D., Hecker, H.-D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Log. Q. 41, 261–267 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shermer, T.C.: Recent results in art gallery theorems. Proc. IEEE 80, 1384–1399 (1992)

    Article  Google Scholar 

  20. Zhang, H., He, X.: On even triangulations of 2-connected embedded graphs. SIAM J. Comput. 34, 683–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Żyliński, P.: Orthogonal art galleries with holes: a coloring proof of Aggarwal’s theorem. Electron. J. Comb. 13, No. 1, Research paper R20, 10 p. (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Michael.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael, T.S., Pinciu, V. How to Guard Orthogonal Polygons: Diagonal Graphs and Vertex Covers. Discrete Comput Geom 55, 410–422 (2016). https://doi.org/10.1007/s00454-015-9756-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9756-0

Keywords

Mathematics Subject Classification

Navigation