Abstract
Let ES(n) be the minimal integer such that any set of ES(n) points in the plane in general position contains n points in convex position. The problem of estimating ES(n) was first formulated by Erdős and Szekeres (Compos Math 2: 463–470, 1935), who proved that \(ES(n) \le \left( {\begin{array}{c}2n-4\\ n-2\end{array}}\right) +1\). The current best upper bound, \(\lim \sup _{n \rightarrow \infty } \tfrac{ES(n)}{\left( {\begin{array}{c}2n-5\\ n-2\end{array}}\right) }\le \tfrac{29}{32}\), is due to Vlachos (On a conjecture of Erdős and Szekeres, 2015). We improve this to




Similar content being viewed by others
References
Bárány, I., Károlyi, G.: Problems and results around the Erdős–Szekeres theorem. In: Japanese Conference on Discrete and Computational Geometry, pp. 91–105 (2001)
Brass, P., Moser, W., Pach, J.: Convex Polygons and the Erdős–Szekeres problem (Chap. 8.2). In: Research Problems in Discrete Geometry. Springer, New York (2005)
Chung, F.R.K., Graham, R.L.: Forced convex \(n\)-gons in the plane. Discrete Comput. Geom. 19, 367–371 (1998)
Chvátal, V., Komlós, J.: Some combinatorial theorems on monotonicity. Can. Math. Bull. 14, 151–157 (1971)
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Etvs. Sect. Math. 34, 53–62 (1960–1961)
Kalbfleisch, J.D., Kalbfleisch, J.G., Stanton R.G.: A combinatorial problem on convex regions. In: Proceedings of Louisiana Conference Combinatorics, Graph Theory and Computing, pp. 180–188 (1970)
Kleitman, D.J., Pachter, L.: Finding convex sets among points in the plane. Discrete Comput. Geom. 19, 405–410 (1998)
Morris, W., Soltan, V.: The Erdős–Szekeres problem on points in convex position a survey. Bull. Am. Math. Soc. 37, 437–458 (2000)
Moshkovitz, G., Shapira, A.: Ramsey theory integer partitions and a new proof of the Erdős–Szekeres theorem. Adv. Math. 262, 1107–1129 (2014)
Norin S.: Erdős–Szekeres for first differences. http://mathoverflow.net/q/91128 (2012)
Seidenberg, A.: A simple proof of a theorem of Erdős and Szekeres. J. Lond. Math. Soc. 34, 352 (1959)
Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős–Szekeres problem. ANZIAM J. 48, 151–164 (2006)
Tóth, G., Valtr, P.: Note on the Erdős–Szekeres theorem. Discret. Comput. Geom. 19, 457–459 (1998)
Tóth, G., Valtr, P.: The Erdős-Szekeres theorem: upper bounds and related results. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, pp. 557–568. Cambridge University Press, Cambridge (2006)
Vlachos G.: On a conjecture of Erdős and Szekeres. http://arxiv.org/abs/1505.07549 (2015)
Acknowledgments
We would like to thank Géza Tóth and Georgios Vlachos for their careful reading of our paper and valuable remarks. Supported by an NSERC Grant 418520.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Rights and permissions
About this article
Cite this article
Norin, S., Yuditsky, Y. Erdős–Szekeres Without Induction. Discrete Comput Geom 55, 963–971 (2016). https://doi.org/10.1007/s00454-016-9778-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-016-9778-2