Skip to main content
Log in

Loops in Reeb Graphs of n-Manifolds

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The Reeb graph of a smooth function on a connected smooth closed orientable n-manifold is obtained by contracting the connected components of the level sets to points. The number of loops in the Reeb graph is defined as its first Betti number. We describe the set of possible values of the number of loops in the Reeb graph in terms of the co-rank of the fundamental group of the manifold and show that all such values are realized for Morse functions and, except on surfaces, even for simple Morse functions. For surfaces, we describe the set of Morse functions with the number of loops in the Reeb graph equal to the genus of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Some authors refer to a Reeb graph without cycles as a contour tree.

  2. A graph admitting multiple edges and loops, i.e., edges that connect a vertex with itself.

  3. The number of independent cycles in the graph, also called cyclomatic number or nullity.

References

  1. Arnoux, P., Levitt, G.: Sur l’unique ergodicité des 1-formes fermées singulières. Invent. Math. 84(1), 141–156 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theoret. Comput. Sci. 392(1–3), 5–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32(2), 231–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dimca, A., Papadima, S., Suciu, A.: Quasi-Kähler groups, 3-manifold groups, and formality. Math. Z. 268(1–2), 169–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  6. Farber, M.: Topology of Closed One-Forms. Mathematical Surveys and Monographs, vol. 108. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  7. Gelbukh, I.: Presence of minimal components in a Morse form foliation. Differ. Geom. Appl. 22(2), 189–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelbukh, I.: Number of minimal components and homologically independent compact leaves for a Morse form foliation. Stud. Sci. Math. Hung. 46(4), 547–557 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Gelbukh, I.: On the structure of a Morse form foliation. Czechoslov. Math. J. 59(134)(1), 207–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelbukh, I.: On collinear closed one-forms. Bull. Aust. Math. Soc. 84(2), 322–336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelbukh, I.: Ranks of collinear Morse forms. J. Geom. Phys. 61(2), 425–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelbukh, I.: Structure of a Morse form foliation on a closed surface in terms of genus. Differ. Geom. Appl. 29(4), 473–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelbukh, I.: Close cohomologous Morse forms with compact leaves. Czechoslov. Math. J. 63(138)(2), 515–528 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gelbukh, I.: The co-rank of the fundamental group: the direct product, the first Betti number, and the topology of foliations. Math. Slovaca 67(3), 645–656 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelbukh, I.: Isotropy index for the connected sum and the direct product of manifolds. Publ. Math. Debr. 90(3–4), 287–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelbukh, I.: Sufficient conditions for the compactifiability of a closed one-form foliation. Turk. J. Math. 41, 1344–1353 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gelbukh, I.: On the topology of the Reeb graph (under review)

  18. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14. Springer, New York (1973). X+209 pp

  19. Hirsch, M.: Smooth regular neighborhoods. Ann. Math. 76(3), 524–530 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaco, W.: Heegaard splittings and splitting homomorphisms. Trans. Am. Math. Soc. 144, 365–379 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaco, W.: Geometric realizations for free quotients. J. Aust. Math. Soc. 14, 411–418 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaluba, M., Marzantowicz, W., Silva, N.: On representation of the Reeb graph as a sub-complex of manifold. Topol. Methods Nonlinear Anal. 45(1), 287–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lambe, L., Priddy, S.: Cohomology of nilmanifolds and torsion-free, nilpotent groups. Trans. Am. Math. Soc. 273(1), 39–55 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leininger, C., Reid, A.: The co-rank conjecture for 3-manifold groups. Algebr. Geom. Topol. 2, 37–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Makanin, G.: Equations in a free group. Math. USSR Izv. 21(3), 483–546 (1983)

    Article  MATH  Google Scholar 

  26. Martinez-Alfaro, J., Meza-Sarmiento, I.S., Oliveira, R.: Topological classification of simple Morse Bott functions on surfaces. In: Real and Complex Singularities. Contemporary Mathematics, vol. 675, pp. 165–179. American Mathematical Society, Providence (2016)

  27. Masumoto, Y., Saeki, O.: Smooth function on a manifold with given Reeb graph. Kyushu J. Math. 65(1), 75–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mel’nikova, I.: A test for non-compactness of the foliation of a Morse form. Russ. Math. Surv. 50(2), 444–445 (1995)

    Article  MATH  Google Scholar 

  29. Mel’nikova, I.: Maximal isotropic subspaces of a skew-symmetric bilinear mapping. Mosc. Univ. Math. Bull. 54(4), 1–3 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Nicolaescu, L.: An Invitation to Morse Theory. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  31. Pedersen, E.: Regular neighborhoods in topological manifolds. Mich. J. Math. 24(2), 177–183 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Razborov, A.: On systems of equations in a free group. Math. USSR Izv. 25, 115–162 (1985)

    Article  MATH  Google Scholar 

  33. Sharko, V.: About Kronrod–Reeb graph of a function on a manifold. Methods Funct. Anal. Topol. 12(4), 389–396 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Gelbukh.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelbukh, I. Loops in Reeb Graphs of n-Manifolds. Discrete Comput Geom 59, 843–863 (2018). https://doi.org/10.1007/s00454-017-9957-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9957-9

Keywords

Mathematics Subject Classification

Navigation