Abstract
We show that a jammed packing of disks with generic radii, in a generic container, is such that the minimal number of contacts occurs and there is only one dimension of equilibrium stresses, which have been observed with numerical Monte Carlo simulations. We also point out some connections to packings with different radii and results in the theory of circle packings whose graph forms a triangulation of a given topological surface.




















Similar content being viewed by others
References
Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)
Asimow, L., Roth, B.: The rigidity of graphs. II. J. Math. Anal. Appl. 68(1), 171–190 (1979)
Atkinson, S., Stillinger, F.H., Torquato, S.: Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings. Phys. Rev. E 88(6), Art. No. 062208 (2013)
Atkinson, S., Stillinger, F.H., Torquato, S.: Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc. Natl Acad. Sci. USA 111(52), 18436–18441 (2014)
Bezdek, A., Bezdek, K., Connelly, R.: Finite and uniform stability of sphere packings. Discrete Comput. Geom. 20(1), 111–130 (1998)
Blind, G.: Über Unterdeckungen der Ebene durch Kreise. J. Reine Angew. Math. 236, 145–173 (1969)
Colin de Verdière, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104(3), 655–669 (1991)
Connelly, R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982)
Connelly, R.: Rigidity of packings. Eur. J. Comb. 29(8), 1862–1871 (2008)
Connelly, R., Dickinson, W.: Periodic planar disc packings. Philos. Trans. R. Soc. Lond. A 372(2008), Art. No. 20120039 (2014)
Connelly, R., Funkhouser, M., Kuperberg, V., Solomonides, E.: Packings of equal disks in a square torus. Discrete Comput. Geom. 58(3), 614–642 (2017)
Connelly, R., Shen, J.D., Smith, A.D.: Ball packings with periodic constraints. Discrete Comput. Geom. 52(4), 754–779 (2014)
Danzer, L.: Finite point-sets on $S^2$ with minimum distance as large as possible. Discrete Math. 60, 3–66 (1986)
de Laat, D., de Oliveira Filho, F.M., Vallentin, F.: Upper bounds for packings of spheres of several radii. Forum Math. Sigma 2, Art. No. e23 (2014)
Dickinson, W., Guillot, D., Keaton, A., Xhumari, S.: Optimal packings of up to five equal circles on a square flat torus. Beitr. Algebra Geom. 52(2), 315–333 (2011)
Donev, A., Stillinger, F.H., Torquato, S.: Calculating the free energy of nearly jammed hard-particle packings using molecular dynamics. J. Comput. Phys. 225(1), 509–527 (2007)
Donev, A., Torquato, S., Stillinger, F.H., Connelly, R.: A linear programming algorithm to test for jamming in hard-sphere packings. J. Comput. Phys. 197(1), 139–166 (2004)
Edwards, S.F., Grinev, D.V.: The missing stress-geometry equation in granular media. Physica A 294(1–2), 57–66 (2001)
Edwards, S.F., Mounfield, C.C.: A theoretical model for the stress distribution in granular matter. I. Basic equations. Physica A 226(1–2), 1–11 (1996)
Edwards, S.F., Mounfield, C.C.: A theoretical model for the stress distribution in granular matter. III. Forces in sandpiles. Physica A 226(1–2), 25–33 (1996)
Fejes Tóth, L.: Lagerungen in der Ebene auf der Kugel und im Raum. Die Grundlehren der mathematischen Wissenschaften, vol. 65. Springer, Berlin (1972)
Guo, R.: Local rigidity of inversive distance circle packing. Trans. Am. Math. Soc. 363(9), 4757–4776 (2011)
Heppes, A.: Some densest two-size disc packings in the plane. Discrete Comput. Geom. 30(2), 241–262 (2003)
Kennedy, T.: A densest compact planar packing with two sizes of discs. arXiv:math/0412418v1 (2004)
Kennedy, T.: Compact packings of the plane with two sizes of discs. Discrete Comput. Geom. 35(2), 255–267 (2006)
Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)
Luo, F.: Rigidity of polyhedral surfaces. III. Geom. Topol. 15(4), 2299–2319 (2011)
Melissen, J.B.M.: Packing and covering with circles = pakken en overdekken met cirkels: (met een samenvatting in het nederlands). PhD Thesis, Universiteit Utrecht (1997)
Mounfield, C.C., Edwards, S.F.: A theoretical model for the stress distribution in granular matter. II. Forces in pipes. Physica A 226(1–2), 12–24 (1996)
Musin, O.R., Nikitenko, A.V.: Optimal packings of congruent circles on a square flat torus. Discrete Comput. Geom. 55(1), 1–20 (2016)
Roth, B., Whiteley, W.: Tensegrity frameworks. Trans. Am. Math. Soc. 265(2), 419–446 (1981)
Roux, J.-N.: Geometric origin of mechanical properties of granular materials. Phys. Rev. E (3) 61(6, part B), 6802–6836 (2000)
Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)
Swinnerton-Dyer, H.P.F.: Inhomogeneous lattices. Proc. Camb. Philos. Soc. 50, 20–25 (1954)
Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: Rivin, I., Rourke, C., Series, C. (eds.) The Epstein Birthday Schrift. Geometry and Topology Monographs, vol. 1, pp. 511–549. Geometry and Topology Publications, Coventry (1998)
Acknowledgements
This work was partially supported by the National Science Foundation Grant DMS-1564493 for Connelly, Solomonides and Yampolskaya, and National Science Foundation Grant DMS-1564473 for Gortler.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Dedicated to the memory of Ricky Pollack.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Connelly, R., Gortler, S.J., Solomonides, E. et al. The Isostatic Conjecture. Discrete Comput Geom 64, 734–758 (2020). https://doi.org/10.1007/s00454-018-00051-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-018-00051-0